Artigo aceito para publicação na revista

Should we use the FES-cycling exercise in clinical practice? Physiological and clinical effects systematic review with meta-analysis

Authors:

Murillo Frazão, PhD^{1,2}, Thainá de Gomes Figueiredo, PhD³, Gerson Cipriano Jr, PhD²

1- Lauro Wanderley University Hospital – UFPB/EBSERH, João Pessoa-PB, Brazil;

2- Postgraduate Program in Health Sciences and Technologies, University of Brasília - UnB, Brasília, Brazil.

3- Oswaldo Cruz University Hospital – UPE, Recife - PE, Brazil.

Abstract

Objective: To examine the evidence regarding FES-cycling's physiological and clinical effects. **Data Sources:** The study was conducted in accordance with PRISMA. PubMed, EMBASE, Cochrane Review, CINAHL, Scopus, Sport Discus, and Web of Science databases were used. **Study Selection:** Randomized controlled trials involving FES-cycling were included. Studies that didn't involve FES-cycling in the intervention group or without the control group were excluded. Two reviewers screened titles and abstracts and then conducted a blinded full-text evaluation. A third reviewer resolved discrepancies. **Data Extraction:** Meta-analysis was performed using inverse variance for continuous data with effect measured by mean difference and random effects analysis model. A 95%

confidence interval was adopted. The significance level was set at p<.05, and trends were declared at p=.05 to \leq .10. The I² method was used for heterogeneity The minimal clinically important difference was calculated. analysis. Methodological quality was assessed by the risk-of-bias tool for randomized trials. The GRADE method was used for the guality of the evidence analysis. **Results:** A total of 52 studies were included. Metabolic, cardiocirculatory, ventilatory, and peripheral muscle oxygen extraction variables presented statistical (p<.05) and clinically important differences favoring FES-cycling, with moderate to high certainty of evidence. It also presented statistical (p<.05) and clinically important improvement in cardiorespiratory fitness, leg and total body lean mass, power, physical fitness in intensive care (moderate to high certainty of evidence), and torque (low certainty of evidence). It presented a trend (p=.05) to \leq .10) of improvement in muscle volume, spasticity, and mobility (low to moderate certainty of evidence). It showed no difference (p>.10) in six-minute walking distance, muscle cross-sectional area, bone density, and length of ICU stay (low to moderate certainty of evidence). Conclusions: FES-cycling exercise is a more intense stimulus modality than other comparative therapeutic modalities and presented clinically important improvement in several clinical outcomes.

Keywords: FES-cycling, electrical stimulation, exercise, physiology, clinical, functional capacity, muscle.

Introduction

Reduced physical capacity is an independent factor for morbidity and allcause mortality¹, with physical exercise being an important treatment component. Highly impaired patients may experience difficulties adhering to conventional physical exercise therapies. Restorative and substitutive technologies can play an important role in these cases, highlighting the benefits of physical exercise even in complex physical limitations.

Functional Electrical Stimulation cycling (FES–cycling) was developed initially in the 1980s² and evolved over the last 40 years. The basis of this technology is the association of an electrical stimulator with a cycle ergometer, a dedicated computer then provides the synchronism of both devices. From an operational point of view, the electrical stimulation device and the cycle ergometer can be adjusted in several modalities in clinical practice according to therapeutic goals and clinical situations. Stationary cycle ergometers allow a motor-powered fixed pedal cadence or a motor-fixed power resistance with a free pedal cadence. Non-stationary cycle ergometers allow free pedal cadence with power resistance due to gear combination and field circuit characteristics. Many commercial devices utilize a pulsed, rectangular, biphasic waveform with a constrained total electrical charge. However, contemporary devices can deliver pulse widths up to 1000 microseconds, intensities reaching 250 milliamperes, and frequencies as high as 250 hertz³.

Initially used for spinal cord injury treatment, its applicability has greatly expanded for the most diverse pathological models (stroke⁴, COVID-19⁵, and critical illness⁶, for example) and therapeutic objectives. Physiologically, FES-cycling enhances metabolic, ventilatory, and cardiovascular demands⁷. Several physiological effects have been reported for acute use of this technology, including changes in the oxygen consumption⁸, peripheral muscle oxygen extraction⁹, stroke volume¹⁰, and minute ventilation¹¹. Clinically, FES-cycling may provide enough physical stress to enable multi-systemic adaptations. Many clinical effects were described for short and long-term use of this therapeutic tool, encompassing adaptations on cardiorespiratory fitness¹², lean body mass¹³, muscle performance¹⁴, and functional capacity¹⁵.

Although a growing body of literature supports this technology, robust evidence-based best practices for its clinical application by healthcare professionals remain insufficiently established. Consequently, the objective of this review is to critically assess the evidence pertaining to the physiological and clinical impacts of FES-cycling.

Methods

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement (PRISMA)¹⁶ and Methodological Expectations of Cochrane Intervention Reviews (MECIR)¹⁷. The study was registered in PROSPERO, the International Prospective Register of Systematic Reviews, under CRD42023425647 number.

Eligibility criteria

Studies that described FES-cycling effects were considered eligible. We included randomized control trial (RCT) studies involving FES-cycling use in healthy volunteers, spinal cord injuries, cerebral palsy, neuromuscular diseases, stroke, critical illness, COVID-19, cardiovascular diseases, or lung diseases, regardless of age and sex. To be included, studies could not have a control group that had undergone FES-cycling. The control group must have received electrical stimulation alone, cycling alone, or any complementary therapy other than FES-cycling (same received by the intervention group). It were excluded studies with therapies not involving FES-cycling in the intervention group. Studies without a control group were excluded also.

Information sources

The search was conducted on the following databases: PubMed, EMBASE, Cochrane Review, CINAHL, Scopus, Sport Discus, and Web of Science. We didn't restrict our search by using a filter for RCTs and sought to identify all types of trials. Data were extracted from inception of the databases until 03 November 2022.

Search strategy

The main keywords with combinations of used terms were FES-cycling, functional electrical stimulation cycling, electrical stimulation, oxygen consumption, stroke volume, pulmonary ventilation, spinal cord injury, neuromuscular diseases, lung diseases, cardiovascular diseases, critical illness, functional capacity, cardiorespiratory fitness, and mobility limitation. Detailed keywords with combinations of used terms are presented in supplemental appendix 1. Due to the large number of studies/outcomes, the review was devided into physiological and clinical effects.

Selection process

The search results were imported into COVIDENCE platform. After removing duplicate files, data were analyzed in two parts. Initially, two reviewers (MF and TGF) independently screened the titles and abstracts in phase one, resolving discrepancies with the help of a third reviewer (GC). After the final selection of eligible papers, phase two began with the same two reviewers conducting a blinded full-text evaluation of the research, accounting for the third reviewer's participation. A list of all potentially relevant studies that were read in full-text form but excluded from the review is provided in supplemental appendix 2.

Data collection process

Following the PRISMA checklist recommendation¹⁶, the characteristics of each primary study were extracted using a pre-pilot data extraction in the COVIDENCE platform were utilized to extract details regarding the methods, participants, interventions, comparators, outcomes, and research design. Outcomes data were also extracted in duplicate for effect measure calculation.

Data items

The physiological outcomes evaluated were a) Metabolic: oxygen consumption (VO₂), carbonic gas production (VCO₂), energy expenditure, and lactate; b) Cardiocirculatory: heart rate, stroke volume, oxygen pulse, and cardiac output; c) Peripheral muscle oxygen extraction: arterial—mixed venous oxygen content difference and deoxyhemoglobin; and d) Ventilatory: minute ventilation. All instruments used to measure the variables are in supplemental appendix 3.

Clinical outcomes evaluated were a) Functional capacity, including cardiorespiratory fitness, six-minute walking distance, and sedentary time/walking or running time; b) Body composition: utilizing muscle cross-sectional area, muscle volume, leg and total body lean mass, fiber type composition, and bone density; c) Spasticity: via pendulum test relaxation time, Ashworth scale and Hoffman reflex; d) Mobility: via gait speed, motricity index,

upright motor control test, gross motor function measure 88, time for independent ambulation and time for marching in place; e) Muscle performance: torque and power and f) Critical illness: physical fitness in intensive care test, patients discharged from hospital to home, ICU length of stay and delirium incidence. All instruments used to measure the variables are in supplemental appendix 3.

The meta-analysis procedure was considered when at least three studies presented similar outcomes, and the calculation was performed utilizing the RevMan web. The statistical method used was inverse variance for continuous data with effect measured by mean difference and random effects analysis model. The confidence interval adopted was 95%. The significance level was set at p<.05, and trends were declared at p=.05 to \leq .10. Minimal clinically important difference (MCID) was calculated by the distribution-based method¹⁸. It was used 0.4 x baseline standard deviation values of the FES-cycling group variables. Between-study variability was examined for heterogeneity, using the I² statistic for quantifying inconsistency. The heterogeneity thresholds were set at $I^2=25\%$ (low), $I^2=50\%$ (moderate), and $I^2=75\%$ (high)¹⁹. Sub-group analyses were performed in peripheral muscle oxygen extraction (because the data for this variable were collected with two different measurement instruments) and cardiorespiratory fitness (because there was a huge difference in training protocol duration) variables. If articles with a discrepant risk of bias are presented for any outcome, a subgroup analysis based on this criterion was be performed.

For isolated studies (single or 2 studies with similar outcomes), analysis was also used on the RevMan Cochrane platform. The statistical method used was inverse variance for continuous data with effect measured by mean difference and Random effects analysis model or Mantel-Haenszel for dichotomous data with effect measured by odds ratio and Radom effects analysis model. The confidence interval adopted was 95%. The significance level was set at p<.05, and trends were declared at p=.05 to \leq .10.

Study risk of bias assessment

The risk-of-bias tool for randomized trials (RoB2) was used to assess the methodological quality of the included articles. Two reviewers used the Rob2

independently. It assessed the risk of bias according to the following domains: randomization process, deviations from intended intervention, missing outcome data, measurement of the outcome, and selection of the reported result.

GRADE

The Grading of Recommendations Assessment, Developing, and Evaluation (GRADE) method was used to assess the quality of the evidence.

Synthesis methods

The following information was provided: author and year, design, sample size, exercise type, duration, volume of training, and outcome measures. A metaanalysis was performed if three or more studies provided similar outcomes.

Results

Characteristics of the studies

Screening results are detailed in Figure 1. Only 1 study was manually included (published after 03 November 2022). 52 studies were included for review: 19 FES-cycling physiological effects studies^{7-11, 20-33,} and 33 FES-cycling clinical effects studies^{4-6, 12-15, 34-59}.

Table 1 presents the characteristics of the 19 physiological studies. There were 198 healthy or neurological participants, with critical illness or COPD as the primary disease. The mean age was 42 ± 13 years old. In declared FES parameter sets, there was a mean $330 \pm 47\mu$ s pulse width, 20 to 145mA range intensity, and a mean 41 ± 17 Hz frequency.

Table 2 presents the characteristics of the 33 clinical studies. There were 1010 participants with neurological, critical illness, or COVID-19 as a primary disease. The mean age was 41 \pm 19 years old. In declared FES parameter sets, there was a mean 344 \pm 88µs pulse width, 0 to 300mA range intensity, and mean

 38 ± 18 Hz frequency. There was a mean 9-week intervention period, ranging from 3 to 7 times per week intervention protocol.

Methodological quality

Figure 2 shows the risk of bias in physiological studies. 42% of the studies presented an overall low risk of bias, 58% presented some concerns about the risk, and none presented a high risk of bias. Figure 3 shows the risk of bias in clinical studies. 18% of the studies presented an overall low risk of bias, 67% presented some concerns about the risk of bias, and 15% presented a high risk of bias.

Physiological effects

Metabolic

Oxygen consumption

Figure 4 shows a mean 0.21L/min improvement in VO₂ favors FES-cycling (95% CI=0.14 to 0.28, p<0.00001), considering an MCID of 0.04L/min (Table 3), with high heterogeneity (I²=91%, p<0.00001) and high certainty of evidence (Table 4).

Carbonic gas production

Figure 4 shows a mean 0.23L/min improvement in VCO₂ favors FEScycling (95% CI=0.08 to 0.38, p=0.002), considering an MCID of 0.06L/min (Table 3), with high heterogeneity (i^2 =84%, p<0.00001) and high certainty of evidence (Table 4).

Energy expenditure

Only two studies analyzed the effects of FES-cycling on energy expenditure. Frazão et al^a. showed a mean 103W improvement in energy expenditure favors FES-cycling (95% CI=74.19 to 131.81, p<0.00001). Frazão et al^b. showed a mean 69W improvement in energy expenditure favors to FES-cycling (95% CI=37.83 to 100.17, p<0.0001).

Lactate

Figure 4 shows a mean 2.35mmol/L improvement in lactate favors to FEScycling (95% CI=0.53 to 4.16, p<0.00001), considering an MCID of 0.28mmol/L (Table 3), with high heterogeneity (i^2 =91%, p<0.00001) and high certainty of evidence (Table 4).

Cardiocirculatory

Heart rate

Figure 5 shows a mean 9.94 beats/min improvement in heart rate favors FES-cycling (95% CI=2.26 to 17.25, p=0.008), considering an MCID of 4.20 beats/min (Table 3), with high heterogeneity (i^2 =88%, p<0.00001) and moderate certainty of evidence (Table 4).

Stroke volume

Figure 5 shows a mean 13.88mL improvement in stroke volume favors FES-cycling (95% CI=4.52 to 23.24, p=0.004), considering an MCID of 2.80mL (Table 3), with high heterogeneity (i^2 =84%, p=0.0003) and high certainty of evidence (Table 4).

Oxygen pulse

Figure 5 shows a mean 3.02mL/beat improvement in oxygen pulse favors FES-cycling (95% CI=2.06 to 3.97, p<0.00001), considering an MCID of 0.70mL/beat (Table 3), with no heterogeneity (i^2 =4%, p=0.35) and high certainty of evidence (Table 4).

Cardiac output

Figure 5 shows a mean 1.46L/min improvement in cardiac output favors to FES-cycling (95% CI=0.63 to 2.28, p=0.0005), considering an MCID of 0.40L/min (Table 3), with high heterogeneity (i^2 =95%, p<0.00001) and high certainty of evidence (Table 4).

Peripheral muscle oxygen extraction

Figure 6 shows the subgroup analysis. The arterial-mixed venous content difference showed a mean 24.29% improvement in peripheral muscle oxygen extraction favors to FES-cycling (95% CI=5.41 to 43.17, p=0.01), considering an MCID of 8.76% (Table 3), with high heterogeneity (i^2 =94%, p<0.00001). Near-infrared spectroscopy-deoxyhemoglobin showed no difference between groups (a non-significant mean of 3.85% favors FES-cycling; 95% CI=-22.74 to 30.44, p=0.78), with high heterogeneity (i^2 =98%, p<0.00001). Overall measurement analysis showed a trend mean 15.25% improvement in peripheral muscle oxygen extraction favors to FES-cycling (95% CI=-0.56 to 31.05, p=0.06), considering an MCID of 8.76% (Table 3), with high heterogeneity (i^2 =97%, p<0.00001) and moderate certainty of evidence (Table 4).

Ventilatory

Figure 7 shows a mean 6.71L/min improvement in minute ventilation favors to FES-cycling (95% CI= 1.95 to 11.47, p=0.006), considering an MCID of 0.86L/min (Table 3), with high heterogeneity (i^2 =98%, p<0.00001) and high certainty of evidence (Table 4).

Clinical effects

Functional capacity

Cardiorespiratory fitness

Figure 8 shows the subgroup analysis. Interventions with more than 8 weeks showed a mean 132.89mL/min oxygen consumption improvement in cardiorespiratory fitness favors FES-cycling (95% CI=5.35 to 260.43, p=0.04), considering an MCID of 0.80mL/min (Table 5), with no heterogeneity (i^2 =0%, p=0.98). Interventions up to 8 weeks showed no difference between groups (a non-significant mean 9.40mL/min oxygen consumption favors FES-cycling; 95% CI=-130.48 to 149.28, p=0.90), with no heterogeneity (i^2 =0%, p=0.89). Overall time interventions showed no difference between groups (a non-significant mean 76.83mL/min oxygen consumption in cardiorespiratory fitness favors FES-cycling; 95% CI=-17.41 to 171.08, p=0.11), with no heterogeneity (i^2 =0%, p=0.91) and high certainty of evidence (Table 6).

Six-minute walking distance

Figure 8 shows no difference between groups (a non-significant mean 5.47m improvement in six-minute walking distance favors the control; 95% CI=-89.31 to 78.37, p=0.90), considering a MCID of 44m (Table 5), with no heterogeneity ($i^2=0\%$, p=0.99) and moderate certainty of evidence (Table 6).

Sedentary / walking or running daytime

Only one study analyzed the effects of FES-cycling on sedentary / walking or running during the daytime. A 200.9 min/day reduction in sedentary time favors FES-cycling (95% CI=-236.45 to -138.35, p<0.00001). There was a 22.20 min/day improvement in walking or running time favoring FES-cycling (95% CI=18.83 to 29.75, p<0.00001).

Body composition

Muscle cross-sectional area

Figure 9 shows no difference between groups (a non-significant mean 30.40% improvement in muscle cross-sectional area favors FES-cycling; 95% CI=-4.31 to 65.12, p=0.11), with high heterogeneity (i²=92%, p<0.00001) and a low certainty of evidence (Table 6).

Muscle volume

Figure 9 shows a trend mean 70.82cm³ improvement in muscle volume favors to FES-cycling (95% CI= -2.36 to 144.01, p=0.06) considering an MCID of 66cm³ (Table 5), with high heterogeneity (i²=99%, p<0.00001) and low certainty of evidence (Table 6).

Leg and total body lean mass

Figure 9 shows a significant mean 2.93Kg improvement in leg lean mass favors to FES-cycling (95% CI=0.71 to 5.15, p=0.010) considering an MCID of 0.88Kg (Table 5), with high heterogeneity (i^2 =76%, p=0.0006). Total body lean mass presented a mean of 5.04Kg favors FES-cycling (95% CI=0.82 to 9.27, p=0.02) considering an MCID of 2.52Kg (Table 5), with moderate heterogeneity (i^2 =70%, p=0.04) (figure 9) and moderate certainty of evidence (Table 6).

Fiber type composition

Only one study analyzed FES-cycling effects on fiber type composition. There was no difference between groups. A non-significant mean of 4.90% type I fiber improvement favors FES-cycling (95% CI=-25.64 to 35.44, p=0.75). A non-significant mean of 3.10% type IIa fiber improvement favors FES-cycling (95% CI=-23.04 to 29.24, p=0.82). A non-significant mean of 2.50% type IIx fiber improvement favors FES-cycling (95% CI=-11.63 to 16.63, p=0.73).

Bone density

Figure 9 shows no difference between groups (a non-significant mean $0.04g/cm^2$ improvement in bone density favors FES-cycling; 95% CI=-0.02 to 0.10, p=0.18) and considering an MCID of $0.01g/cm^2$ (Table 5), with no heterogeneity (i²=0%, p=0.95) and moderate certainty of evidence (Table 6).

Spasticity

Pendulum test – relaxation index

Figure 10 shows a trend mean 0.09 score improvement in the pendulum test relaxation index favoring FES-cycling (95% CI=-0.00 to 0.17, p=0.06) considering an MCID of 0.07 score (Table 5), with no heterogeneity (i^2 =3%, p=0.39) and moderate certainty of evidence (Table 6).

Ashworth Scale

Figure 10 shows a significant mean 0.33 score reduction in the Ashworth scale favors FES-cycling (95% CI=-0.60 to -0.05, p=0.02), with no heterogeneity (i^2 =3%, p=0.39) considering an MCID of 0.40 score (Table 5) and low certainty of evidence (Table 6).

Hoffman reflex (H/M ratio)

Figure 10 shows a trend mean 0.10 score reduction in Hoffman reflex favors FES-cycling (95% CI=-0.21 to 0.02, p=0.09) considering an MCID of 0.09 score (Table 5), with no heterogeneity ($i^2=0\%$, p=0.60) and moderate certainty of evidence (Table 6).

Mobility

Gait speed

Only one study analyzed FES-cycling effects on gait speed. There was no difference between groups (a non-significant mean of 0.10m/s improvement favors FES-cycling; 95% CI=-0.29 to 0.49, p=0.62).

Motricity index

Figure 11 shows no difference in the mean 0.19 score of the motricity index (95% CI=-2.07 to 2.45, p=0.06), considering an MCID of 4.60 scores (Table 5). There is no heterogeneity (i^2 =0%, p=0.87) and moderate certainty of evidence (Table 6).

Upright motor control

Only two studies analyzed FES-cycling effects on upright motor control tests. Amborisini et al. showed a trend mean of 1.70 score improvement favors FES-cycling (95% CI=-0.34 to 3.70, p=0.10), while Ferrante et al. showed no difference between groups a non-significant mean of 0.40 score improvement favors to FES-cycling; 95% CI=-0.67 to 1.74, p=0.46).

Gross Motor Function Measure 88

Figure 11 shows no difference between groups (a non-significant mean 3.99 score improvement in gross motor function measure 88 favors FES-cycling; 95% CI=-17.01 to 25.00, p=0.71), considering an MCID of 11.50 score (Table 5), with no heterogeneity (i^2 =0%, p=0.94) and moderate certainty of evidence (Table 6).

Time for independent ambulation

Only one study analyzed the effects of FES-cycling on time for independent ambulation. There was no difference between groups (a non-significant mean 12.00 days reduction favors FES-cycling; 95% CI=-32.30 to 8.30, p=0.25).

Time for marching in place

Only one study analyzed FES-cycling effects on time for marching in place. There was no difference between groups (a non-significant mean 3.72 days reduction favors to FES-cycling; 95% CI=-13.41 to 5.97, p=0.45).

Muscle performance

<u>Torque</u>

Figure 12 shows a significant mean 20.31N improvement in torque favors to FES-cycling (95% CI=0.99 to 39.63, p=0.04), considering an MCID of 11N (Table 5), with high heterogeneity (i^2 =84%, p=0.0006) and low certainty of evidence (Table 6).

<u>Power</u>

Figure 12 shows a significant mean 7.81W improvement in power favors to FES-cycling (95% CI=5.86 to 9.75, p<0.00001) considering an MCID of 3.8W (Table 5), with no heterogeneity (i^2 =0%, p=0.83) and high certainty of evidence (Table 6).

Critical illness

Physical Fitness in Intensive Care Test (PFIT)

Figure 13 shows a significant mean 1.21 score improvement in physical fitness in intensive care test favors to FES-cycling (95% CI=0.04 to 2.38, p=0.04), considering an MCID of 1.12 score (Table 5), with low heterogeneity (i^2 =49%, p=0.14) and high certainty of evidence (Table 6).

Patients discharged from hospital to home

Only two studies analyzed FES-cycling effects on the percentage of patients discharged from the hospital to home. Berney et al. showed a trend mean 11% improvement favors to FES-cycling, with an odds ratio = 1.59 (95% CI=0.90 to 2.81, p=0.10). Parry et al. showed a significant mean 42% improvement favoring FES-cycling, with an odds ratio = 8.14 (95% CI=4.09 to 16.23, p<0.00001).

ICU length of stay

Figure 13 shows no difference between groups (a non-significant mean 0.54 days reduction in ICU length of stay favors to FES-cycling; 95% CI=-2.42 to 1.34, p=0.57), considering an MCID of 1.84 days (Table 5), with low heterogeneity (i^2 =40%, p=0.19) and moderate certainty of evidence (Table 6). <u>Delirium incidence</u>

Only two studies analyzed FES-cycling effects on the percentage of delirium incidence. Berney et al. showed no difference between groups (a non-significant mean 4% reduction favors to FES-cycling, with an odds ratio = 0.85; 95% CI=0.48 to 1.49, p=0.57). Parry et al. showed a significant mean 62% reduction favors to FES-cycling, with an odds ratio = 0.05 (95% CI=0.02 to 0.10, p < 0.000001).

Discussion

Physiological effects

Higher VO₂ differences were especially greater when FES-cycling was compared to passive cycling^{7, 8, 28, 29}. However, it was also higher when compared to isolated electrical stimulation (without cycling)⁷ or associated with arm crank exercise^{9, 10, 23, 31}. VO₂ normally increases close to linearly as power output increases⁶⁰. Two isolated analyses showed that muscle contraction can be viewed as converting chemical energy into mechanical work. FES-cycling promotes a higher level of energy expenditure due to muscle contraction substantially increasing⁷.

VCO₂ and lactate were significantly higher during FES-cycling in almost all studies reviewed. The two greatest VCO₂ differences were when FES-cycling was compared to passive cycling⁷ and associated with arm crank exercise³¹. It suggests greater metabolic stress, exercise intensity, and glycolytic fiber recruitment. At this exercise intensity, CO₂ comes from two distinct sources: it is produced from aerobic metabolism and also from the buffering of lactic acid⁶¹. The three studies with the highest levels of blood lactate^{11, 23, 32} in the FES-cycling group had the highest FES intensity. The amount of motor unit recruitment is related to the electrical intensity⁶². As lactate accumulation also comes from lactic acid buffering, it suggests a large amount of glycolytic fiber recruitment.

The highest heart rate difference achieved was when FES-cycling was compared to passive cycling²⁹. However, the highest stroke volume and oxygen pulse differences were when associated with the arm crank exercise^{9, 31}. Greater muscle activity promotes greater blood demand and pumping (blood return), which is drained from the periphery to the heart, improving stroke volume. Three studies showed greater cardiac output when comparing FES-cycling to the passive cycling^{7, 28, 29}; two showed greater cardiac output when associated with the arm crank exercise^{9, 10}, and one when compared to isolated electrical stimulation (without cycling)⁽⁷⁾. The highest cardiac output difference was when compared to passive cycling. Heart rate adjustments seem more relevant to cardiac output than stroke volume.

Peripheral muscle oxygen extraction results depended on the data extraction/analysis modality. Arterial-mixed venous oxygen content difference analysis showed a clinically important difference that favors FES-cycling. Nearinfrared spectroscopy (NIRS) analysis did not capture any superiority of FEScycling. There was a clinically important significant difference trend in favor of FES-cycling. Delving deeper into deoxyhemoglobin analysis, one study³⁰, strongly moves the diamond away from significance. On the other hand, the other three other studies²⁶ pull the diamond to the significance. Interestingly, both are from the same research group. The earlier study analyzed active FES-cycling against active cycling plus FES placebo. The late ones compared passive FEScycling to passive leg mobilization, passive cycling, and isolated electrical stimulation (without cycling). The later study showed a higher deoxyhemoglobin²⁸ compared passive FES-cycling to passive cycling. Voluntary muscle contraction plays a role in this case. During muscle contraction, arterioles have a greater vasodilatation, irrigating the active muscles with increased muscular blood perfusion63.

Clinical effects

FES-cycling exercise improves cardiorespiratory fitness but is closely related to the duration of the exercise program. FES-cycling exercise needs more than 8 weeks to enhance oxygen consumption capacity. Intervention periods of up to 8 weeks are insufficient to promote cardiorespiratory fitness adaptations. The relation between cardiorespiratory fitness improvement and exercise program duration is well established. Nonoyama et al.⁶⁴ previously reported a VO₂ improvement throughout rehabilitation programs in individuals with respiratory, cardiac, or no comorbidities. Ward et al.⁶⁵ showed the importance of total training volume supported by greater improvements in VO₂ peak with programs > 12

weeks compared with those 6 to 12 weeks in duration and a positive trend between the total number of training sessions and change in VO₂ peak.

Reduction in sedentary time and improvement in active time was reported in a short therm exercise (4 weeks) single study with COVID-19 patients immediately after ICU hospitalization. Short-therm FES-cycling increases physical activity levels independently of gains in cardiorespiratory fitness. Even though gains in cardiorespiratory fitness are more important for reducing the risk of chronic heart and cardiovascular diseases, increasing physical activity levels promotes a protective effect already⁶⁶.

The six-minute walking distance is a worldwide functional capacity marker used in several pathological conditions. This review measured it in Myotonic Dystrophy Type I, Stroke, and Cerebral Palsy. FES-cycling had no superior effect in all these situations compared to control therapy. Curiously, all reviewed studies reported a short-term exercise program duration (ranging from 15 days to 6 weeks). As a longer exercise training duration is necessary for cardiorespiratory fitness improvement, it may also be necessary for six-minute walking distance improvement.

Lean mass was greatly improved with the FES-cycling exercise. All reviewed studies reported high FES intensity levels (up to 140 mA). Beyond leg lean mass, total body mass also improved, suggesting that a systemic growth effect may have been achieved. High-intensity current stimulation induces up-regulation of IGF-1 and modulation of MuRF-1 (a muscle-specific atrophy-related gene). It also induces up-regulation of relevant markers of differentiating satellite cells and extracellular matrix remodeling, reducing fibrosis⁶⁷. Besides improvement in lean mass, FES-cycling provided only a trend of improvement in muscle volume and no improvement in muscle cross-sectional area. A single study showed no effects of FES-cycling on fiber type composition. Despite muscle mass changes, FES-cycling didn't bring any additional benefits to bone density.

FES-cycling showed spasticity reduction in Ashworth Scale analysis and a trend to decrease in Pendulum Test and Hoffman Reflex analysis. Most studies evaluated an acute effect of FES-cycling using a low electrical stimulation frequency (20Hz), with only 1 to 3 sessions of therapy. Two plausible reasons for spasticity reduction may be the repetitive and reciprocal stretching exercise during cycling and the effects of electrical stimulation on muscle tone. The elastic and parallel elastic components influence the resistance produced when muscles are stretched. These 2 components of the muscle might be changed after being stretched⁵⁹. Additionally, whole-leg blood flow is lower in individuals with greater spasticity⁶⁸. Previous studies demonstrated that electrical stimulation improves muscle blood flow^{69, 70}, which can reduce muscle tone.

Regarding mobility improvement, FES-cycling showed a favorable trend (without a clinically important difference) in the Motricity Index and no difference in Gross Motor Function Measure 88. Isolated analysis showed no differences (or slight trend) in gait speed, upright motor control, time for a march in place, and time to independent ambulation.

Strength and power are key elements to the capacity of the muscle to do work (muscle performance). To improve this capacity, these two aspects should be regarded. Torque (strength) and power were deeply improved with FES-cycling. For this improvement to be reached, many studies ^{37, 39, 46, 47} used high FES intensity levels (up to 140, up to 150, or up to 300 mA). Higher intensities induce higher motor unit recruitment, higher intramuscular tissue pressure, and, consequently, ischemia⁷¹. The adaptation mechanisms for the repeated muscle tension generation may be involved in muscle performance improvement. Good muscle performance improves functional capacity⁷² and reduces the risk of cardiovascular disease⁷³ and mortality⁷⁴. Additionally, the increases in torque and power strongly impact the motor recovery¹⁴.

FES-cycling improved physical function in critically ill patients. There is a relationship between effectiveness and FES parameter adjustments. Higher FES parameters induced higher improvement. Parry et al.⁶ reported a 2.4 gain in physical function score using a 300-400 µs pulse width and a maximum of 140 mA of pulse. Meanwhile, Berney et al.¹⁵ achieved only a 1.3 gain using 250 µs (average-sized legs) or 300 µs (legs with edema) pulse width with a pulse amplitude varying from 20–30 mA. Waldauf et al.⁵⁸ reached a -0.2 PFIT score with a 250 µs pulse width and a pulse amplitude varying from 0–60 mA. Critically ill patients commonly present neuromuscular electrophysiological disorders⁷⁵.

Figueiredo et al.⁷⁶ showed that critically ill patients have a high stimulation cost (i.e., the total electrical charge delivery rate per watt of output power).

FES-cycling didn't affect the ICU length of stay besides better physical function. However, patients can be discharged from the hospital for better physical function and sent home without requiring ambulatory rehabilitation. The study with better physical function outcomes also presented a higher odds ratio of discharge from the hospital to the home⁶. The same study also reduced the incidence of delirium.

The use of FES cycling in Clinical Practice

There is a moderate to high level of evidence that FES-cycling induces higher physiological effects with a clinically important difference. FES-cycling exercise seems more intense and may provide enough physical stress for multi-systemic adaptation. There is a moderate to high level of evidence that FES-cycling improves cardiorespiratory fitness, leg and total body lean mass, power, and physical fitness in the intensive care unit, with a clinically important difference. However, some precautions must be taken. Long-term duration programs (more than 8 weeks) are needed for cardiorespiratory fitness improvement. Lean body mass and muscle performance improvement demand high-intensity electrical stimulation. High pulse width and intensity electrical stimulation are necessary in critically ill patients.

Strengths and Limitations

This is the first systematic review focused on using FES-cycling for clinical practice. We carefully reviewed several physiological and clinical outcomes to provide the best evidence available, helping healthcare professionals understand the use of this technology in direct patient care. Precisely, the reader will have the opportunity to know in which clinical and physiological outcomes the intervention surpasses the minimal clinically important difference and the certainty of evidence for each outcome.

The major limitation of this review was that it was not possible to perform meta-analysis on some clinically very important variables, such as time for independent ambulation, because the number of studies for some specific outcomes was limited.

Conclusions

FES-cycling exercise provides an intense stimulus modality. In general, metabolic, cardiocirculatory, ventilatory, and peripheral muscle oxygen extraction variables presented clinically important differences favoring FES-cycling (moderate to high certainty of evidence). It also presented clinically important improvement in cardiorespiratory fitness, leg and total body lean mass, power, physical fitness in intensive care (moderate to high certainty of evidence), and torque (low certainty of evidence). It presented a trend of improved muscle volume, spasticity, and mobility (low to moderate certainty of evidence). It showed no difference in six-minute walking distance, muscle cross-sectional area, bone density, and length of ICU stay (low to moderate certainty of evidence). On the evidence provided by this review, FES-cycling will provide positive changes in several clinical outcomes for patients.

References

1. Robert Ross SNB, Ross Arena, Timothy S Church, Jean-Pierre Després, Barry A Franklin, William L Haskell, Leonard A Kaminsky, Benjamin D Levine, Carl J Lavie, Jonathan Myers, Josef Niebauer, Robert Sallis, Susumu S Sawada, Xuemei Sui, Ulrik Wisløff. Importance of Assessing Cardiorespiratory Fitness in Clinical Practice: A Case for Fitness as a Clinical Vital Sign: A Scientific Statement From the American Heart Association. Circulation. 2016;134(24):e653-e99.

2. K J Hunt JF, J Saengsuwan, M Grob, M Laubacher. On the efficiency of FES cycling: a framework and systematic review. Technol Health Care. 2012;20(5):395-422.

3. Thainá de Gomes Figueiredo MF, Luiz Augusto Werlang, Maikel Peltz, Dário Celestino Sobral Filho. Functional electrical stimulation cycling-based muscular evaluation method in mechanically ventilated patients. Artif Organs. 2023.

4. Petra Bauer CK, Stefan Golaszewski, Eberhard Koenig, Friedemann Müller. Functional electrical stimulation-assisted active cycling--therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke: a randomized controlled pilot study. Arch Phys Med Rehabil. 2015;96(2):188-96.

5. Sébastien Mateo VB, Maxime Cheminon, Amandine Guinet-Lacoste, Marie-Caroline Pouget, Sophie Jacquin-Courtois, Jacques Luauté, Julie-Anne Nazare, Chantal Simon, Gilles Rode. Functional electrical stimulation-cycling favours erectus position restoration and walking in patients with critical COVID-19. A proof-of-concept controlled study. Ann Phys Rehabil Med. 2021;64(6):101516.

6. Selina M Parry SB, Stephen Warrillow, Doa El-Ansary, Adam L Bryant, Nicholas Hart, Zudin Puthucheary, Renè Koopman, Linda Denehy. Functional electrical stimulation with cycling in the critically ill: a pilot case-matched control study. J Crit Care. 2014;29(4):695.e1-7.

7. Murillo Frazão LAW, Cássio Azevedo, Adelar Kunz, Maikel Peltz. Metabolic, ventilatory and cardiovascular responses to FES-cycling: A comparison to NMES and passive cycling. Technology and Health Care. 2022;30:909-18.

8. Thomas Edwards RWM, Lara A Pilutti. Cardiorespiratory demand of acute voluntary cycling with functional electrical stimulation in individuals with multiple sclerosis with severe mobility impairment. Appl Physiol Nutr Metab. 2018;43(1):71-6.

9. S P Hooker 1 SFF, M M Rodgers, R M Glaser, T Mathews, A G Suryaprasad, S C Gupta. Metabolic and hemodynamic responses to concurrent voluntary arm crank and electrical stimulation leg cycle exercise in quadriplegics. J Rehabil Res Dev. 1992;29(3):1-11.

10. J Raymond GMD, M Climstein, J R Sutton. Cardiorespiratory responses to arm cranking and electrical stimulation leg cycling in people with paraplegia. Med Sci Sports Exerc. 1999;31(6):822-8.

11. M Kjaer GP, N H Secher, R Boushel, N Beyer, S Pollack, A Horn, A Fernandes, T Mohr, S F Lewis, et al. Cardiovascular and ventilatory responses to electrically induced cycling with complete epidural anaesthesia in humans. Acta Physiol Scand. 1994;151(2):199-207.

12. Therese E Johnston BTS, Mary J Mulcahey, Randal R Betz, Richard T Lauer. A randomized controlled trial on the effects of cycling with and without electrical stimulation on cardiorespiratory and vascular health in children with spinal cord injury. Arch Phys Med Rehabil. 2009;90(8):1379-88.

13. J C Baldi RDJ, R Moraille, W J Mysiw. Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation. Spinal Cord. 1998;36(7):463-9.

14. S Ferrante AP, G Ferrigno, F Molteni. Cycling induced by functional electrical stimulation improves the muscular strength and the motor control of individuals with post-acute stroke. Europa Medicophysica-SIMFER 2007 Award Winner. Eur J Phys Rehabil Med. 2008;44(2):159-67.

15. Sue Berney ROH, Joleen Wyn Rose, Rene Koopman, Zudin Puthucheary, Amy Pastva, Ian Gordon, Elizabeth Colantuoni, Selina M Parry, Dale M Needham, Linda Denehy. Functional electrical stimulation in-bed cycle ergometry in mechanically ventilated patients: a multicentre randomised controlled trial. Thorax. 2021;76(7):656-63.

16. Matthew J Page JEM, Patrick M Bossuyt, Isabelle Boutron, Tammy C Hoffmann, Cynthia D Mulrow, Larissa Shamseer, Jennifer M Tetzlaff, Elie A Akl, Sue E Brennan, Roger Chou, Julie Glanville, Jeremy M Grimshaw, Asbjørn Hróbjartsson, Manoj M Lalu, Tianjing Li, Elizabeth W Loder, Evan Mayo-Wilson, Steve McDonald, Luke A McGuinness, Lesley A Stewart, James Thomas, Andrea C Tricco, Vivian A Welch, Penny Whiting, David Moher. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71).

17. Higgins JPT LT, Chandler J, Tovey D, Churchill R. Methodological Expectations of Cochrane Intervention Reviews. Cochrane: London. 2016.

18. Jennifer A. Watt AAV, Andrea C. Tricco, Sharon E. Straus. Using a distribution-based approach and systematic review methods to derive minimum clinically important differences. BMC Med Res Methodol. 2021;21(41).

19. Julian P T Higgins SGT, Jonathan J Deeks, Douglas G Altman. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60.

20. C Fornusek THG, R Heard Cardiorespiratory responses during functional electrical stimulation cycling and electrical stimulation isometric exercise. Spinal Cord. 2014;52(8):635-9.

21. Jan Gojda PW, Natália Hrušková, Barbora Blahutová, Adéla Krajčová, Tomáš Urban, Petr Tůma, Kamila Řasová, František Duška. Lactate production without hypoxia in skeletal muscle during electrical cycling: Crossover study of femoral venous-arterial differences in healthy volunteers. PLoS One. 2019;14(3):e0200228.

22. Nur Azah Hamzaid NAAN, Engkasan JP. Heart rate and blood pressure following functional electrical stimulation evoked activity amongst in patients with spinal cord injury. Neurorehabilitation and

Neural Repair. 2018;32(4-5):527.

23. Nazirah Hasnan NE, Aldre Izabel P Tanhoffer, Ricardo Tanhoffer, Che Fornusek, James W Middleton, Ruby Husain, Glen M Davis. Exercise responses during functional electrical

stimulation cycling in individuals with spinal cord injury. Med Sci Sports Exerc. 2013;45(6):1131-8.

24. Nazirah Hasnan M, Nurul Salwani Mohamad Saadon, Nur Azah Hamzaid, Mira Xiao-Hui Teoh, Sirous Ahmadi, Glen M. Davis. Muscle oxygenation during hybrid arm and functional electrical stimulation–evoked leg cycling after spinal cord injury. Medicine (Baltimore). 2018;97(43):e12922.

25. Clément Médrinal GP, Baptiste Hemeryck, Aurora Robledo Quesada, YannCombret, Anas Nassaj, Claude Dubreuil. Metabolic effects of electrotherapy combined with bedside cycleergometry: Preliminary study. Kinesither Rev. 2015:1-5.

26. Clément Medrinal YC, Guillaume Prieur, Aurora Robledo Quesada, Tristan Bonnevie, Francis Edouard Gravier, Elise Dupuis Lozeron, Eric Frenoy, Olivier Contal, Bouchra Lamia. Comparison of exercise intensity during four early rehabilitation techniques in sedated and ventilated patients in ICU: a randomised cross-over trial. Crit Care. 2018;22(1):110.

27. Clément Medrinal GP, Yann Combret, Aurora Robledo Quesada, David Debeaumont, Tristan Bonnevie, Francis Edouard Gravier, Elise Dupuis Lozeron, Jean Quieffin, Olivier Contal, Bouchra Lamia. Functional Electrical Stimulation-A New Therapeutic Approach to Enhance Exercise Intensity in Chronic Obstructive Pulmonary Disease Patients: A Randomized, Controlled Crossover Trial. Arch Phys Med Rehabil. 2018;99(8):1454-61.

28. Satoshi Muraki CF, Jacqui Raymond, Glen Macartney Davis. Muscle oxygenation during prolonged electrical stimulation-evoked cycling in paraplegics. Appl Physiol Nutr Metab. 2007;32(3):463-72.

29. M S Nash MSB, H M Kearney, J N Ramirez, B Applegate, B A Green. Effects of electricallystimulated exercise and passive motion on echocardiographically-derived wall motion and cardiodynamic function in tetraplegic persons. Paraplegia. 1995;33(2):80-9.

30. Guillaume Prieur YC, Tristan Bonnevie, Francis-Edouard Gravier, Aurora Robledo Quesada, Jean Quieffin, Bouchra Lamia, Clement Medrinal. Functional Electrical Stimulation Changes Muscle Oxygenation in Patients with Chronic Obstructive Pulmonary Disease During Moderate-Intensity Exercise: A Secondary Analysis. COPD. 2019;16(1):30-6.

31. J Raymond GMD, A Fahey, M Climstein, J R Sutton. Oxygen uptake and heart rate responses during arm vs combined arm/electrically stimulated leg exercise in people with paraplegia. Spinal Cord. 1997;35(10):680-5.

32. Thomas A W Paulson NCB, Brett M Smith, Victoria L Goosey-Tolfrey. Inflammationmediating cytokine response to acute handcycling exercise with/without functional electrical stimulation-evoked lower-limb cycling. J Rehabil Res Dev. 2014;51(4):645-54.

33. Suzanne Máté NC, Daniel Hackett, Michael Barnett,, Maria Fiatarone Singh CF. Functional electrical stimulation combined with voluntary cycling accentuates VO2 response in people with severe multiple sclerosis: A pilot study. Multiple Sclerosis and Related Disorders. 2024;85:105552.

34. Emilia Ambrosini SF, Giancarlo Ferrigno, Franco Molteni, Alessandra Pedrocchi. Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients. IEEE Trans Neural Syst Rehabil Eng. 2012;20(3):320-30.

35. Emilia Ambrosini SF, Alessandra Pedrocchi, Giancarlo Ferrigno, Franco Molteni. Cycling induced by electrical stimulation improves motor recovery in postacute hemiparetic patients: a randomized controlled trial. Stroke. 2011;42(4):1068-73.

36. Ellen L Armstrong RNB, Sean A Horan, Megan J Kentish, Robert S Ware, Christopher P Carty. Functional electrical stimulation cycling, goal-directed training, and adapted cycling for children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2020;62(12):1406-13.

37. A J T Bakkum SdG, J M Stolwijk-Swüste, D J van Kuppevelt; ALLRISC; L H V van der Woude, T W J Janssen. Effects of hybrid cycling versus handcycling on wheelchair-specific fitness and physical activity in people with long-term spinal cord injury: a 16-week randomized controlled trial. Spinal Cord. 2015;53(5):395-401. 38. S A Bloomfield WJM, R D Jackson. Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone. 1996;19(1):61-8.

39. Berit Brurok JH, Trine Karlsen, Gunnar Leivseth, Jan Hoff. Effect of aerobic high-intensity hybrid training on stroke volume and peak oxygen consumption in men with spinal cord injury. Am J Phys Med Rehabil. 2011;90(5):407-14.

40. Paola Cudia LW, Alfonc Baba, Pawel Kiper, Andrea Marcante, Simonetta Rossi, Corrado Angelini, Francesco Piccione. Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study. Am J Phys Med Rehabil. 2016;95(11):809-17.

41. Davide G de Sousa LAH, Simone Dorsch, Joan Leung, Whitney Harris. Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised trial. J Physiother. 2016;62(4).

42. Timothy J. Demchak JKL, W. Jerry Mysiw, Rebecca Jackson, Jihong Suun, and Steven T. Devor. Effects of Functional Electric Stimulation Cycle Ergometry Training on Lower Limb Musculature in Acute Sci Individuals. J Sports Sci Med. 2005;4(3):263–71.

43. David R Dolbow DPC, Jennifer L Lemacks, Dobrivoje S Stokic, Sambit Pattanaik, Gevork N Corbin, Andrew S Courtner. Electrically induced cycling and nutritional counseling for counteracting obesity after spinal cord injury: A pilot study. J Spinal Cord Med. 2021;44(4):533-40.

44. P Eser EDdB, I Telley, H E Lechner, H Knecht, E Stüssi. Effect of electrical stimulationinduced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest. 2003;35(5):412-9.

45. Mary P Galea MGP, Doa El-Ansary, Sarah A Dunlop, Ruth Marshall, Jillian M Clark, Leonid Churilov. A Randomized Controlled Trial Investigating the Efficacy and Safety of Functional Electrical Stimulation-Assisted Cycling and Passive Cycling Initiated Early After Traumatic Spinal Cord Injury. Neurorehabil Neural Repair. 2017;31(3):540-51.

46. Thomas W Janssen JMB, Peter Elich, Peter A Koppe, Hermanna Konijnenbelt, Arnold de Haan, Karin H Gerrits. Effects of electric stimulation-assisted cycling training in people with chronic stroke. Arch Phys Med Rehabil. 2008;89(3):463-9.

47. Therese E Johnston CMM, Randal R Betz, Richard T Lauer. Muscle changes following cycling and/or electrical stimulation in pediatric spinal cord injury. Arch Phys Med Rehabil. 2011;92(12):1937-43.

48. Phillip Krause JS, Andreas Straube. Changes in spastic muscle tone increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements. Clin Rehabil. 2008;22(7):627-34.

49. Chien-Hung Lai WH-SC, Wing P Chan, Chih-Wei Peng, Li-Kuo Shen, Jia-Jin J Chen, Shih-Ching Chen. Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med. 2010;42(2):150-4.

50. R T Lauer BTS, M J Mulcahey, R R Betz, T E Johnston. Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury. Spinal Cord. 2011;49(8):917-23.

51. Hsin-Chang Lo Y-CH, Ya-Hsin Hsueh, Chun-Yu Yeh. Cycling exercise with functional electrical stimulation improves postural control in stroke patients. Gait Posture. 2012;35(3):506-10.

52. Hsin-Chang Lo K-HT, Fong-Chin Su, Guang-Liang Chang, Chun-Yu Yeh. Effects of a functional electrical stimulation-assisted leg-cycling wheelchair on reducing spasticity of patients after stroke. J Rehabil Med. 2009;41(4):242-6.

53. Natalya Özen EU, Ozgur Zeliha Karaahmet, Eda Gurcay, Ibrahim Gundogdu, Ebru Umay. Effectiveness of Functional Electrical Stimulation - Cycling Treatment in Children with Cerebral Palsy. Malawi Med J. 2021;33(3):144-52.

54. Maya G Panisset DE-A, Sarah Alison Dunlop, Ruth Marshall, Jillian Clark, Leonid Churilov, Mary P Galea. Factors influencing thigh muscle volume change with cycling exercises in acute spinal cord injury - a secondary analysis of a randomized controlled trial. J Spinal Cord Med. 2022;45(4):510-21.

55. Keira E Ralston LH, Julia Batty, Lee B Bonsan, Marsha Ben, Rita Cusmiani, Jacqueline Bennett. Functional electrical stimulation cycling has no clear effect on urine output, lower limb swelling, and spasticity in people with spinal cord injury: a randomised cross-over trial. J Physiother. 2013;59(4):237-43.

56. Cristina L. Sadowsky ERH, Adam B. Strohl, Paul K. Commean, Sarah A. Eby, Diane L. Damiano, Jason R. Wingert, Kyongtae T. Bae, and John W. McDonald, III. Lower extremity functional electrical stimulation cycling promotes physical and functional recovery in chronic spinal cord injury. J Spinal Cord Med. 2013;36(6):623-31.

57. Ashwini Sansare ATH, Henry Wright, James Alesi, Ahad Behboodi, Khushboo Verma, Samuel C K Lee. Aerobic Responses to FES-Assisted and Volitional Cycling in Children with Cerebral Palsy. Sensors (Basel). 2021;21(22):7590.

58. Petr Waldauf NH, Barbora Blahutova, Jan Gojda, Tomáš Urban, Adéla Krajčová, Michal Fric, Kateřina Jiroutková, Kamila Řasová, František Duška Functional electrical stimulationassisted cycle ergometry-based progressive mobility programme for mechanically ventilated patients: randomised controlled trial with 6 months follow-up. Thorax. 2021;76(7):664-71.

59. Chun-Yu Yeh K-HT, Fong-Chin Su, Hsin-Chang Lo. Effect of a bout of leg cycling with electrical stimulation on reduction of hypertonia in patients with stroke. Arch Phys Med Rehabil. 2010;91(11):1731-6.

60. Hansen JE CR, Cooper DM, Wasserman K. Oxygen uptake as related to work rate increment during cycle ergometer exercise. European Journal of Applied Physiology and Occupational Physiology. 1988;57:140-5.

61. K Wasserman BJW. Excercise physiology in health and disease. Am Rev Respir Dis. 1975;112(2):219-49.

62. G R Adams RTH, D Woodard, G A Dudley. Mapping of electrical muscle stimulation using MRI. J Appl Physiol (1985). 1993;74(2):532-7.

63. Thomas GD SS. Neural control of muscle blood flow during exercise. J Appl Physiol (1985). 2004;97(2):731-8.

64. Mika L Nonoyama SM, Dina Brooks, Paul Oh. Comparison of cardiac rehabilitation outcomes in individuals with respiratory, cardiac or no comorbidities: A retrospective review. Can J Respir Ther. 2016;52(2):43-9.

65. Thomas J C Ward CDP, Thomas E Dolmage, Amy V Jones, Ruth Trethewey, Pip Divall, Sally J Singh, Martin R Lindley, Michael C Steiner, Rachael A Evans. Change in VO2peak in Response to Aerobic Exercise Training and the Relationship With Exercise Prescription in People With COPD: A Systematic Review and Meta-analysis. Chest. 2020;158(1):131-44.

66. Barry A Franklin TMHE, Ambarish Pandey, John Quindry, Peter P Toth. Physical activity, cardiorespiratory fitness, and cardiovascular health: A clinical practice statement of the American Society for Preventive Cardiology Part II: Physical activity, cardiorespiratory fitness, minimum and goal intensities for exercise training, prescriptive methods, and special patient populations. Am J Prev Cardiol. 2022;12:100425.

67. Helmut Kern LB, Stefan Löfler, Simona Sbardella, Samantha Burggraf, Hannah Fruhmann, Ugo Carraro, Simone Mosole, Nejc Sarabon, Michael Vogelauer, Winfried Mayr, Matthias Krenn, Jan Cvecka, Vanina Romanello, Laura Pietrangelo, Feliciano Protasi, Marco Sandri, Sandra Zampieri, Antonio Musaro. Electrical stimulation counteracts muscle decline in seniors. Front Aging Neurosci. 2014;24:189.

68. Mandeep S Dhindsa CAM, Lauren E Brandt, Hirofumi Tanaka, Lisa Griffin. Muscle spasticity associated with reduced whole-leg perfusion in persons with spinal cord injury. J Spinal Cord Med. 2011;34(6):594-9.

69. Yu Shang YL, Brad A Henry, Ran Cheng, Chong Huang, Li Chen, Brent J Shelton, Karin R Swartz, Sara S Salles, Guoqiang Yu. Noninvasive evaluation of electrical stimulation impacts on muscle hemodynamics via integrating diffuse optical spectroscopies with muscle stimulator. J Biomed Opt. 2013:105002.

70. Alejandro Zulbaran-Rojas ML, Rasha O Bara, Areli Flores-Camargo, Gil Spitz, M G Finco, Amir Behzad Bagheri, Dipaben Modi, Fidaa Shaib, Bijan Najafi. Electrical stimulation to regain lower extremity muscle perfusion and endurance in patients with post-acute sequelae of SARS CoV-2: A randomized controlled trial. Physiol Rep. 2023;11(5):e15636.

71. T Sadamoto FB-P, Y Suzuki. Skeletal muscle tension, flow, pressure, and EMG during sustained isometric contractions in humans. Eur J Appl Physiol Occup Physiol. 1983;51(3):395-408.

72. Tsung-Hsien Wang C-PW, Li-Ying Wang. Impact of peripheral muscle strength on prognosis after extubation and functional outcomes in critically ill patients: a feasibility study. Sci Rep. 2021;11(1):16082.

73. Enrique G Artero D-cL, Carl J Lavie, Vanesa España-Romero, Xuemei Sui, Timothy S Church, Steven N Blair. Effects of muscular strength on cardiovascular risk factors and prognosis. J Cardiopulm Rehabil Prev. 2012;32(6):351-8.

74. Legrand D VB, Matheï C, Adriaensen W, Van Pottelbergh G, Degryse JM. Muscle strength and physical performance as predictors of mortality, hospitalization, and disability in the oldest old. J Am Geriatr Soc. 2014;62(6):1030-8.

75. Silva PE MH, de Deus Macedo JR et al. . Towards innovative electrodiagnosis tests to investigate neuromuscular excitability dysfunction in critically ill patients: an agreement study. Res Biomed Eng. 2023.

76. Figueiredo TG FM, Werlang LA et al. . Functional electrical stimulation cycling-based muscular evaluation method in mechanically ventilated patients. Artif Organs. 2023.

Figures legends

- Figure 1 Studies screening flow.
- Figure 2 Risk of bias in physiological studies.
- Figure 3 Risk of bias in clinical studies.
- Figure 4 Metabolic effects.
- Figure 5 Cardiocirculatory effects.
- Figure 6 Peripheral muscle oxygen extraction effects.
- Figure 7 Ventilatory effects.
- Figure 8 Functional capacity effects.
- Figure 9 Body composition effects.
- Figure 10 Spasticity effects.
- Figure 11 Mobility effects.
- Figure 12 Muscle performance effects.
- Figure 13 Critical illness effects.

Unique ID	Study ID	Experimental	Comparator	Outcome	Weight	D1	D2	D3	D4	D5	Overall
1	Edwards 2018	Active FES-cycling	Passive cycling	VO2 and Heart Rate	1	+	+	+	+	+	+
2	Fornusek 2014	Passive FES-cycling	FES alone	VO2 and Heart Rate	1	!	+	+	+	+	!
3	Frazão 2022	Passive FES-cycling	Passive cycling or FES alone	VO2, VCO2, Cardiac Output, Oxygen pulse, Ca-vO2 and VE	1	+	+	+	+	+	+
4	Gojda 2019	Passive FES-cycling	Active cycling	Lactate	1	+	+	+	+	+	+
5	Kjaer 1994	Passive FES-cycling	Active cycling	VO2, Lactate, Cardiac Output, Heart Rate and VE	1	!	+	+	+	+	!
6	Hamzaid 2018	Passive FES-cycling	Arm cycling	Heart Rate	1	!	+	+	+	+	!
7	Hasnan 2013	Passive FES-cycling + arm cycling	Arm cycling	VO2, Lactate and Ca-vO2	1	!	+	+	+	+	!
8	Hasnan 2018	Passive FES-cycling + arm cycling	Arm cycling	Deoxyhemoglobin	1	!	+	+	+	+	!
9	Hooker 1992	Passive FES-cycling + arm cycling	Arm cycling	VO2, Cardiac Output, Stroke volume, Heart Rate, Ca-vO2 and VE	1	!	+	+	+	+	!
10	Medrinal 2015	Active FES-cycling	Active cycling	VO2, VCO2 and VE	1	!	+	+	+	+	!
11	Medrinal 2018	Passive FES-cycling	Passive leg mobilization or passive cycling or FES alone	Cardiac Output, Heart Rate and Deoxyhemoglobin	1	+	+	+	+	+	+
12	Medrinal 2018.2	Active FES-cycling	Placebo Active FES- cycling	VO2, VCO2, Lactate, Heart Rate and VE	1	+	+	+	+	+	+
13	Muraki 2007	Passive FES-cycling	Passive cycling	VO2, Cardiac Output, Stroke volume, Heart Rate, Deoxyhemoglobin and VE	1	!	+	+	+	+	!
14	Nash 1995	Passive FES-cycling	Passive cycling	VO2, Cardiac Output, Stroke volume, Heart Rate and Ca- VO2	1	+	+	+	+	+	+
15	Prieur 2019	Active FES-cycling	Placebo Active FES- cycling	Deoxyhemoglobin	1	+	+	+	+	+	+
16	Raymond 1999	Passive FES-cycling + arm cycling	Arm cycling	VO2, Cardiac Output, Stroke volume, Heart Rate, Ca-VO2 and VE	1	!	+	+	+	+	!
17	Raymond 1997	Passive FES-cycling + arm cycling	Arm cycling	VO2, VCO2, Heart Rate, Oxygen pulse and VE	1	!	+	+	+	+	!
18	Paulson 2014	Passive FES-cycling + arm cycling	Arm cycling	VO2, Lactate and Heart Rate	1	!	+	+	+	+	!
19	Máté 2024	Active FES-cycling	Active cycling	VO2	1	!	+	+	+	+	+

D1 - Randomisation process

D2 - Deviations from the intended interventions D3 - Missing outcome data

D4 - Measurement of the outcome

D5 - Selection of the reported result

Unique ID	Study ID	Experimental	Comparator	Outcome	Weight	D1	D2	D3	D4	D5	Overall
1	Ambrosini 2012	Passive FES-cycling	Placebo FES-cycling	Torque	1	+	+	+	+	+	+
2	Ambrosini 2011	Active FES-cycling	Placebo FES-cycling	Torque and motricity index	1	+	!	+	+	+	!
3	Armstrong 2020	Active FES-cycling + Usual care	Usual care	Power AND GMFM88	1	+	+	+	+	+	+
4	Bakkum 2015	Passive FES-cycling + Arm cycling	Arm cycling	Cardiorespiratory Fitness -VO2 and power	1	•	•	+	+	+	!
5	Baldi 1998	Passive FES-cycling	no FES training or FES alone	Leg Lean mass and total body Lean mass	1	•	!	+	+	+	!
6	Bauer 2014	Active FES-cycling	Active cycling	Motricity index	1	•	+	+	+	+	!
7	Berney 2021	FES-cycling + Usual care	Usual care	PFIT, Muscle CSA and ICU LOS	1	+	+	+	+	+	•
8	Bloomfield 1996	Passive FES-cycling	no FES-cycling training	Bone density	1	e	!	+	+	+	-
9	Brurok 2011	Passive FES-cycling + Arm cycling	no FES-cycling training	Cardiorespiratory Fitness - VO2 and power	1	•	•	+	•	+	-
10	Cudia 2016	FES-cycling	resistance + aerobic training	6MWT	1	-	-	+		+	-
11	deSousa 2016	FES-cycling	Usual care	Torque	1	+	+	+	+	+	+
12	Demchak 2005	Passive FES-cycling	no FES-cycling training	Muscle CSA	1			+	+	+	!
13	Dolbow 2020	Passive FES-cycling + nutrition	nutrition	Leg Lean mass and Total body Lean mass	1	+	•	+	+	+	-
14	Ferrante 2008	Passive FES-cycling + standard rehabilitation	Standard Rehabilitation	Motricity index, UMCT, Toquer and Power	1	•	1	+	+	+	!
15	Galea 2017	Passive FES-cycling	Passive cycling	Muscle CSA and Leg Lean mass	1	+	+	+	+	+	+
16	Janssen 2008	Active FES-cycling	Active placebo FES-cycling	Cardiorespiratory Fitness - VO2, 6MWT, Motricity index, Torque and Power	1	1	1	+	+	+	!
17	Johnston 2009	Passive FES-cycling	Passive cycling or FES alone	Cardiorespiratory Fitness - VO2	1	+	1	+	+	+	!
18	Johnston 2011	Passive FES-cycling	Passive cycling or FES alone	Muscle volume and Torque	1	+	!	+	+	+	!
19	Johnston 2011	Passive FES-cycling	Passive cycling or FES alone	Muscle volume	1		•	+	+	+	!
20	Johnston 2011	Passive FES-cycling	Passive cycling or FES alone	Torque	1	+	!	+	-	+	-
21	Krause 2008	Passive FES-cycling	Passive cycling	Pendulum test and Ashworth Scale	1	+	•	+	+	+	!
22	Lai 2010	Passive FES-cycling	No FES-cycling training	Bone density	1	•		+	+	+	!
23	Lauer 2011	Passive FES-cycling	Passive cycling or FES alone	Bone density	1	+	1	+	+	+	!
24	Lo 2012	Active FES-cycling	Active cycling	Pendulum Test and Hoffmann's reflex	1	+	!	+	+	+	!
25	Lo 2009	Active FES-cycling	Active cycling or arm exercise	Pendulum Test, Ashworth Scale and Hoffmann's reflex	1	1	1	+	+	+	!
26	Özen 2021	Passive FES-cycling	Placebo passive FES-cycling or usual care	6MWT, Ashworth Scale and GMFM88	1	+	•	+	+	+	!
27	Panisset 2022	Passive FES-cycling	Passive cycling	Muscle volume	1	+	1	+	+	+	!
28	Parry 2014	Passive FES-cycling + usual care	Usual care	PFIT and ICU LOS	1	1	•	+	+	+	!
29	Ralston 2013	Passive FES-cycling + usual care	Usual care	Ashworth Scale	1	+	+	+	+	+	•
30	Sadowsky 2013	Passive FES-cycling	no FES-cycling training	Muscle volume	1	1	!	+	+	+	!
31	Sansare 2021	Active FES-cycling	Active cycling or no intervention	Cardiorespiratory Fitness - VO2	1	+	1	+	+	+	!
32	Waldauf 2021	Passive FES-cycling + usual care	Usual care	PFIT, Muscle CSA and ICU LOS	1	+	+	+	+	+	+
33	Yeh 2010	Active FES-cycling	Active cycling	Pendulum Test and Ashworth Scale	1	+		+	+	+	!

High risk

D1 - Randomisation process

D2 - Deviations from the intended interventions

D3 - Missing outcome data

D4 - Measurement of the outcome D5 - Selection of the reported result

Oxygen consumption

exygen een	Jampaon									
	FE	S-cycling		(Control			Mean difference	Mean	difference
Study or Subgroup	Mean (L/min)	SD (L/min)	Total	Mean (L/min)	SD (L/min)	Total	Weight	IV, Random, 95% CI (L/min)	IV, Random	, 95% CI (L/min)
Edwards 2018	0.38	0.13	6	0.06	0.06	5	7.3%	0.32 [0.20, 0.44]		
Fornusek 2014	0.45	0.19	8	0.46	0.20	8	5.5%	-0.01 [-0.20, 0.18]		-
Frazão 2022ª	0.26	0.15	10	-0.02	0.11	10	7.3%	0.28 [0.16, 0.40]		_ —
Frazão 2022b	0.26	0.15	10	0.05	0.12	10	7.2%	0.21 [0.09, 0.33]		
Hasnan 2013	0.59	0.06	9	0.46	0.06	9	8.5%	0.13 [0.07, 0.19]		
Hooker 1992	0.79	0.02	8	0.43	0.02	8	8.9%	0.36 [0.34, 0.38]		•
Kjaer 1994	0.72	0.20	8	0.79	0.19	8	5.5%	-0.07 [-0.26, 0.12]		
Máté 2024	0.50	0.13	10	0.39	0.16	10	7.0%	0.10 [-0.03, 0.23]		
Medrinal 2015	0.94	0.22	6	0.77	0.18	6	4.7%	0.17 [-0.06, 0.40]		— •
Medrinal 2018.2	0.39	0.15	23	0.36	0.17	23	7.8%	0.04 [-0.05, 0.13]		- - -
Muraki 2007	0.53	0.16	4	0.04	0.16	4	4.8%	0.49 [0.27, 0.71]		
Nash 1995	0.43	0.32	6	-0.01	0.11	6	3.9%	0.44 [0.17, 0.71]		
Paulson 2014	1.00	0.15	5	0.86	0.14	5	5.7%	0.14 [-0.04, 0.32]		—
Raymond 1997	1.33	0.12	7	1.01	0.12	7	7.0%	0.32 [0.19, 0.45]		_ _
Raymond 1999	0.96	0.05	10	0.70	0.04	10	8.8%	0.26 [0.22, 0.30]		•
Total (95% CI)			130			129	100.0%	0.21 [0.14, 0.28]		•
Heterogeneity: Tau ² =	0.01; Chi ² = 150.6	1, df = 614 (P <	0.00001)	l² = 91%						
Test for overall effect:	Z = 5.75 (P < 0.00	001)							-0.75 -0.50 -0.25	0 0.25 0.50 0.75
Test for subgroup diffe	rences: Not applic	able							Favours (Control)	Favours (FES-cycling)

Carbonic gas production

	FE	S-cycling			Control			Mean difference		Mea	n diffe	rence
Study or Subgroup	Mean (L/min)	SD (L/min)	Total	Mean (L/min)	SD (L/min)	Total	Weight	IV, Random, 95% CI (L/min)		IV, Rando	m, 95%	GCI (L/min)
razão 2022a	0.31	0.16	10	-0.04	0.10	10	23.1%	0.35 [0.23, 0.47]				
razão 2022b	0.31	0.16	10	0.15	0.17	10	21.5%	0.16 [0.02, 0.30]				-
Medrinal 2015	0.99	0.38	3	0.59	0.31	6	6.6%	0.41 [-0.09, 0.91]			+	
Medrinal 2018.2	0.58	0.16	23	0.54	0.16	23	24.5%	0.04 [-0.05, 0.13]				
Raymond 1997	1.56	0.08	7	1.24	0.10	7	24.3%	0.32 [0.23, 0.41]				
otal (95% CI)			53			56	100.0%	0.23 [0.08, 0.38]			•	•
Heterogeneity: Tau ² =	0.02; Chi ² = 24.57	df = 4 (P < 0.0	001); l ² =	84%								· .
l'est for overall effect:	Z = 3.07 (P = 0.00	2)							-1	-0.5	0	0.5
Fest for subaroup diffe	erences: Not applic	able							Fat	yours (Contro	0	Favours (FES

1 -0.5 0 0.5 1 Favours (Control) Favours (FES-cycling)

Lactate

	FE	S-cycling		(Control			Mean difference	Mean difference
Study or Subgroup	Mean (mmol/L)	SD (mmol/L)	Total	Mean (mmol/L)	SD (mmol/L)	Total	Weight	IV, Random, 95% CI (mmol/L)	IV, Random, 95% CI (mmol/L)
Godja 2019	0.7	1.06	14	-0.7	2.18	14	20.6%	1.40 [0.13, 2.67]	
Hasnan 2013	3.9	0.85	9	2.9	0.54	9	22.2%	1.00 [0.34, 1.66]	
Kjaer 1994	7.2	1.70	8	1.4	0.81	8	20.5%	5.80 [4.50, 7.10]	_
Medrinal 2018.2	2.1	4.63	23	0.6	3.17	23	16.8%	1.48 [-0.81, 3.77]	
Paulson 2014	3.9	1.56	5	1.9	0.65	5	19.9%	2.00 [0.52, 3.48]	
Total (95% CI)			59			59	100.0%	2.35 [0.53, 4.16]	

Heterogeneity: Tau² = 3.76; Chi² = 42.23, df = 4 (P < 0.00001); l² = 91% Test for overall effect: Z = 2.53 (P = 0.01) Test for subgroup differences: Not applicable

8 -4 0 4 8 Favours (Control) Favours (FES-cycling) 4 -8

Heart rate

	FE	S-cycling		(Control			Mean difference	Mean difference
Study or Subgroup	Mean (beats/min)	SD (beat/min)	Total	Mean (beats/min)	SD (beat/min)	Total	Weight	IV, Random, 95% CI (beats/min) IV, Random, 95% CI (beats/min)
Edwards 2018	33.6	15.62	6	2.0	7.21	5	7.1%	31.60 [17.59, 45.61]	
Formusek 2014	37.0	23.26	8	43.0	25.08	8	4.8%	-6.00 [-29.70, 17.70]	
Hamzaid 2018	25.8	17.86	5	9.0	10.16	4	5.9%	16.80 [-1.77, 35.37]	
Hooker 1992	51.0	2.24	8	33.0	2.83	8	9.5%	18.00 [15.50, 20.50]	•
Kjaer 1994	66.8	6.96	8	71.9	11.41	8	8.3%	-5.16 [-14.12, 4.10]	
Medrinal 2018.2	10.1	17.30	23	7.5	16.88	23	8.2%	2.60 [-7.28, 12.48]	_
Medrinal 2018a	3.0	21.28	19	0	20.53	19	7.3%	3.00 [-10.30, 16.30]	_
Medrinal 2018b	3.0	21.28	19	0	22.01	19	7.2%	3.00 [-10.77, 16.77]	e
Medrinal 2018c	3.0	21.28	19	-1.0	22.31	19	7.1%	4.00 [-9.86, 17.86]	_
Muraki 2007	23.0	12.08	4	-5.0	5.10	4	7.4%	28.00 [15.15, 40.85]	_
Nash 1995	40.0	31.40	6	-12.2	28.90	6	3.1%	52.20 [18.05, 86.35]	—
Paulson 2014	105.0	11.00	5	104.0	16.00	5	6.3%	1.00 [-16.02, 18.02]	
Raymond 1997	69.0	7.81	7	52.0	7.07	7	8.7%	17.00 [9.20, 24.80]	
Raymond 1999	44.0	5.39	10	49.0	6.71	10	9.1%	-5.00 [-10.33, 0.33]	
Total (95% CI)	445.00 01 7 400	15 JK - 10 (D -	147	0.12 - 0.01		145	100.0%	9.94 [2.62, 17.25]	◆
Heterogeneity: I au ² =	= 145.06; Chi* = 106	.45, df = 13 (P <	0.0000	1); 1² = 88%					
l est for overall effect:	Z = 2.66 (P = 0.008	5)							-/5 -50 -25 0 25 50 /5
l est for subgroup diff	erences: Not applica	able							Favours (Control) Favours (FES-cycling)

Stroke volume

	FE	S-cycling			Control			Mean difference				Mean	ı diff	erence	Ð		
Study or Subgroup	Mean (mL)	SD (mL)	Total	Mean (mL)	SD (mL)	Total	Weight	IV, Random, 95% CI (mL)			IV,	Rando	m, 9	5% CI	(mL)		
Hooker 1992	17.0	3.61	8	-6.0	4.24	8	36.4%	23.00 [19.14, 26.86]							-	-	
Murki 2007	14.0	11.40	4	5.0	21.02	4	11.3%	9.00 [-14.43, 32.43]					+	•			
Nash 1995	3.0	20.51	6	1.5	8.07	6	16.3%	1.50 [-16.14, 19.14]					-+•		—		
Raymond 1999	29.5	4.83	10	17.7	4.74	10	36.0%	11.80 [7.61, 15.99]							-		
Total (95% CI)			28			28	100.0%	13.88 [4.52, 23.24]									
Heterogeneity: Tau ² = 5	58.73; Chi ² = 18.55	5, df = 13 (P = 0	0.0003); I ² :	= 84%													
Test for overall effect: 2	Z = 2.91 (P = 0.004	4)							-40	-30	-20	-10	0	10	20	30	40
Test for subgroup differ	rences: Not applica	able								Favo	ours (O	Control))	Favo	urs (F	ES-c	ycling)

Oxygen pulse

	FE	S-cycling		(Control			Mean difference			Mean	diffe	erence		
Study or Subgroup	Mean (mL/beat)	SD (mL/beat)	Total	Mean (mL/beat)	SD (mL/beat)	Total	Weight	IV, Random, 95% CI (mL/beat)		IV, R	andom,	95%	, CI (mL/b	eat)	
Frazão 2022a	2.2	2.58	10	-0.5	1.66	10	24.6%	2.70 [0.80, 4.60]				Т			
Frazão 2022b	2.2	2.58	10	0.3	2.05	10	21.4%	1.90 [-0.14, 3.94]				+		_	
Raymond 1997	12.2	1.20	7	8.6	1.20	7	54.0%	3.60 [2.34, 4.86]					_	-	
Total (95% CI)			27			27	100.0%	3.02 [2.06, 3.97]					-		
Heterogeneity: Tau ² =	0.03; Chi ² = 2.08, d	df = 2 (P = 0.35)	; l ² = 4%												
Test for overall effect:	Z = 6.17 (P < 0.000	001)							-6	-4	-2	0	2	4	6
Test for subgroup diffe	erences: Not applica	able							F	avours ((Control)	1	Favours	(FES-c	ycling)

Cardiac output

	FE	S-cycling		(Control			Mean difference			Mear	ı differ	rence		
Study or Subgroup	Mean (L/min)	SD (L/min)	Total	Mean (L/min)	SD (L/min)	Total	Weight	IV, Random, 95% CI (L/min)		IV, I	Randor	n, 95%	CI (L/n	nin)	
Frazão 2022a	1.1	0.28	10	-0.1	0.28	10	13.1%	1.20 [0.95, 1.45]					•		
Frazão 2022b	1.1	0.28	10	0.2	0.63	10	12.8%	0.90 [0.47, 1.33]				-	-		
Hooker 1992	5.5	0.22	8	2.5	0.22	8	13.2%	3.00 [2.78, 3.22]						•	
Kjaer 1994	9.9	1.47	8	9.9	1.34	8	9.7%	-0.08 [-1.46, 1.30]			_	•	_		
Medrinal 2018a	1.0	2.86	19	-0.1	2.64	19	8.3%	1.10 [-0.65, 2.85]				+	•		
Medrinal 2018b	1.0	2.86	19	0.1	2.79	19	8.2%	0.90 [-0.90, 2.70]							
Medrinal 2018c	1.0	2.86	19	0.2	2.79	19	8.2%	0.80 [-1.00, 2.60]							
Muraki 2007	3.5	1.30	4	-0.2	1.49	4	7.7%	3.70 [1.76, 5.64]						•	_
Nash 1995	2.5	2.58	6	-0.3	1.72	6	6.0%	2.80 [0.32, 5.28]				-			-
Raymond 1999	6.5	0.54	10	5.6	0.47	10	12.8%	0.90 [0.46, 1.34]				-	-		
Total (95% CI)			113			113	100.0%	1.46 [0.63, 2.28]				.	•		
Heterogeneity: Tau ² =	1.33; Chi ² = 186.98	B, df = 9 (P < 0.0	00001); l²	= 95%						- 1					
Test for overall effect:	Z = 3.47 (P = 0.000	05)							-6	-4	-2	0	2	4	6

Test for subgroup differences: Not applicable

Favours (Control) Favours (FES-cycling)

Peripheral muscle oxygen extraction

	FE	S-cycling			Control			Mean difference	M	ean difference
Study or Subgroup	Mean (%)	SD (%)	Total	Mean (%)	SD (%)	Total	Weight	IV, Random, 95% CI (%)	IV, Ra	indom, 95% CI (%)
Arterial-mixed venus of	oxygen content o	lifference								
razão 2022a	56.9	22.4	10	-5.9	18.6	10	8.8%	62.80 [44.75, 80.85]		
razão 2022b	56.9	22.4	10	15.7	14.9	10	8.9%	41.20 [24.53, 57.87]		
lasnan 2013	12.8	5.8	9	21.6	5.7	9	9.8%	-8.80 [-14.11, -3.49]		•
looker 1992	83.6	5.9	8	75.4	5.9	8	9.8%	8.20 [2.42, 13.98]		•
lash 1995	55.8	93.3	6	-4.1	51.0	6	2.6%	59.90 [-25.18, 144.98]	-	
Raymond 1999	128.3	14.6	10	109.8	13.8	10	9.3%	18.50 [6.05, 30.95]		
Subtotal (95% CI)			53			53	49.1%	24.29 [5.41, 43.17]		•
Heterogeneity: Tau ² = 4 Test for overall effect: Z	42.50; Chi ² = 90. = 2.52 (P = 0.01)	72, df = 5 (P <)	0.00001); l ²	= 94%						
lear infrared spectros	copy - Deoxyhe	moglobin								
lasnan 2018	-22.15	9.7	8	-0.06	0.03	8	9.7%	-22.09 [-28.81, -15.37]	-	-
ledrinal 2018a	24.00	9.0	19	-27.11	11.44	19	9.7%	51.11 [44.56, 57.66]		-
ledrinal 2018b	24.00	9.0	19	1.39	10.70	19	9.7%	22.61 [16.32, 28.90]		+
ledrinal 2018c	24.00	9.0	19	15.87	11.07	19	9.7%	8.13 [1.71, 14.55]		•
/luraki 2007	28.75	32.7	4	-21.50	4.46	4	7.0%	50.28 [17.91, 82.59]		
rieur 2019	84.00	29.0	8	212.00	65.00	8	5.0%	-128.00 [-177.32, -78.68]	←	
bubtotal (95% CI) leterogeneity: Tau ² = 9 'est for overall effect: Z	84.13; Chi ² = 280 = 0.28 (P = 0.78)	1.77, df = 5 (P ·	77 < 0.00001);	I² = 98%		77	50.9%	3.85 [-22.74, 30.44]		•
otal (95% CI) Heterogeneity: Tau ² = 6	57.59; Chi ² = 388	8.52, df = 11 (P	130 < 0.00001)	; I² = 97%		130	100.0%	15.25 [-0.56, 31.05]	150 100 50	0 50 100

Ventilatory

	FE	S-cycling			Control			Mean difference	Mean difference	
Study or Subgroup	Mean (L/min)	SD (L/min)	Total	Mean (L/min)	SD (L/min)	Total	Weight	IV, Random, 95% CI (L/min)	IV, Random, 95% CI (L/min)	
Fornusek 2014	22.3	8.90	8	23.1	9.08	8	8.7%	-0.80 [-9.61, 8.01]		
Frazão 2022a	11.0	3.16	10	0.0	2.24	10	12.1%	11.00 [8.60, 13.40]	-	
Frazão 2022b	11.0	3.16	10	7.0	6.08	10	11.3%	4.00 [-0.25, 8.25]	_ _	
Hooker 1992	29.7	0.82	8	15.9	0.73	8	12.4%	13.80 [13.04, 14.56]	-	
Kiaer 1994	23.8	6.82	8	16.1	5.23	8	10.4%	7.67 [1.71, 13.63]	_ _	
Medrinal 2015	18.8	11.55	6	13.9	12.06	6	6.3%	4.85 [-8.51, 18.21]	.	
Medrinal 2018.2	25.0	1.50	23	23.6	1.50	23	12.4%	1.40 [0.53, 2.27]	-	
Muraki 2007	23.7	14.63	1	2.1	1.97	4	2.2%	21.60 [-7.14, 50.34]		
Raymond 1997	39.8	2.31	7	35.9	3.96	7	11.7%	3.90 [0.50, 7.30]		
Raymond 1999	27.8	2.28	10	19.2	1.24	10	12.3%	8.60 [6.99, 10.21]	-	
Total (95% CI)			91			94	100.0%	6.71 [1.95, 11.47]	•	
Heterogeneity: Tau ² =	47.27; Chi ² = 464	.70, df = 9 (P <	0.00001);	I ² = 98%						
Test for overall effect:	Z = 2.76 (P = 0.0	06)							-30 -20 -10 0 10 20	30
Test for subgroup diffe	erences: Not appli	cable							Favours (Control) Favours (FES-co	vclina)

Cardiorespiratory fitness

ouraiorespi	ratory man	000								
	FE	S-cycling			Control			Mean difference	Mean difference	
Study or Subgroup	Mean (mL/min)	SD (mL/min)	Total	Mean (mL/min)	SD (mL/min)	Total	Weight	IV, Random, 95% CI (mL/min)	IV, Random, 95% CI (mL/mir	ר)
More than 8 weeks										
Bakkum 2015	140	290.0	10	50	240.8	10	16.3%	90.00 [-143.63, 323,63]	-	
Brurok 2011	160	178.0	6	10	162.8	6	23.8%	150.00 [-43.01, 343.01]		
Johnston 2009a	100	344.0	8	-50	248.4	8	10.3%	150.00 [-144.03, 444.03]		
Johnston 2009b	100	344.0	8	-60	566.0	8	4.2%	160.00 [-298.97, 618.97]		
Subtotal (95% CI)			32			32	54.6%	132.89 [5.35, 260.43]	◆	
Heterogeneity: Tau ² =	0.00; Chi ² = 0.19,	df = 3 (P = 0.98)	; l² = 0%							
Test for overall effect:	Z = 2.04 (P = 0.04)								
Up to 8 weeks										
Janssen 2008	100	424.0	6	200	424.2	5	3.5%	-100.00 [-603.34, 403.34]		
Sansare 2021a	23	228.0	14	21	291.5	11	20.2%	2.00 [-207.61, 211.61]	+	
Sansare 2021b	23	228.0	14	-11	276.6	11	21.7%	34.00 [-168.44, 236.44]		
Subtotal (95% CI)			34			27	45.4%	9.40 [-130.48, 149.28]	-	
Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi ² = 0.24, Z = 0.13 (P = 0.09	df = 2 (P = 0.89) 0)	; 2 = 0%							
Total (95% CI)			66			59	100.0%	76.83 [-17.41, 171.08]	-	
Heterogeneity: Tau ² =	0.00: Chi ² = 2.06.	df = 6 (P = 0.91)	: l ² = 0%							
Test for overall effect:	Z = 1.60 (P = 0.11))	,						-750 -500 -250 0 250 5	00 750
Test for subgroup diffe	erences: Chi ² = 1.6	, 3. df = 1 (P = 0.2	20): I ² = 38	8.8%					Eavours (Control) Eavours (Ef	ES-cycling
. set is: sabgroup and		o, o (i o.a	,							Lo oyoning

Six-minute walking distance

	FE	S-cycling			Control			Mean difference	Mean difference
Study or Subgroup	Mean (meters)	SD (meters)	Total	Mean (meters)	SD (meters)	Total	Weight	IV, Random, 95% CI (meters)	IV, Random, 95% CI (meters)
Cudia 2016	58.0	181.2	4	40.0	250.0	4	7.7%	18.00 [-284.58, 320.58]	
Janssen 2008	25.0	199.6	6	25.0	149.6	6	17.6%	0.00 [-199.59, 199.59]	_
Özen 2021a	30.9	137.0	9	48.6	122.9	9	48.6%	-17.67 [-137.91, 102.57]	_
Özen 2021b	30.9	137.0	9	24.2	185.9	7	26.1%	6.67 [-157.57, 170.91]	F
Total (95% CI)			28			26	100.0%	-5.46 [-89.31, 78.37]	+
Heterogeneity: Tau ² =	0.00; Chi ² = 0.09,	df = 3 (P = 0.99)	; l² = 0%						
Test for overall effect:	Z = 0.13 (P = 0.90)							-400 -300 -200 -100 0 100 200 300 400
Test for subgroup diffe	erences: Not applic	able							Favours (Control) Favours (FES-cycling

Muscle cross-sectional area

	F	ES-cycling			Control			Mean difference			Mear	n diffe	erence		
Study or Subgroup	Mean (%)	SD (%)	Total	Mean (%)	SD (%)	Total	Weight	IV, Random, 95% CI (%)		IN	/, Rand	om, 9	5% CI (%)	
Berney 2021	-6.8	63.8	80	-15.5	49.1	82	26.5%	8.70 [-8.86, 26.26]					-		
Demchack 2005	63.4	29.2	5	-61.7	31.3	5	21.3%	125.10 [87.58, 162.62]							-
Galea 2017	-10.1	38.0	10	-13.6	23.4	11	24.2%	3.50 [-23.81, 30.81]				-	_		
Waldauf 2021	-11.0	20.8	57	-13.0	22.0	54	28.0%	2.00 [-5.97, 9.97]				÷			
Fotal (95% CI)			152			152	100.0%	30.40 [-4.31, 65.12]							
Heterogeneity: Tau ² = 1	104.07; Chi ² = 3	9.66, df = 3 (P < 0.00001)	; I ² = 92%						1	- 1		1	1	
Test for overall effect: 2	Z = 1.72 (P = 0.0	9)							-150	-100	-50	0	50	100	150
Fest for subgroup differ	ences: Not appli	cable							F	avours	Control)	Favou	s (FES-	-cvclin

Muscle volume

	FI	ES-cycling			Control			Mean difference		Mear	n diffe	rence	
Study or Subgroup	Mean (cm ³)	SD (cm ³)	Total	Mean (cm ³)	SD (cm ³)	Total	Weight	IV, Random, 95% CI (cm ³)		IV, Rando	om, 95	i% CI (cm ³)	
Johnston 2011a	55.0	447	8	20.0	186	8	4.1%	35.00 [-300.50, 370.50]					
Johnston 2011b	55.0	447	8	110.0	469	8	2.4%	-55.00 [-503.96, 393.96]			•		-
Panisset 2022	-45.1	501	10	-172.4	268	9	3.7%	127.30 [-229.18, 483.78]					
Sadowsky 2013a	368.0	15	25	253.0	15	20	29.9%	115.00 [106.18, 123.82]				-	
Sadowsky 2013b	81.0	5	25	71.0	5	20	30.0%	10.00 [7.06, 12.94]			•		
Sadowsky 2013c	297.0	20	25	201.0	20	20	29.8%	96.00]84.24, 107.76[•	
Total (95% CI) Heterogeneity: Tau ² = 4	641.09: Chi ² = 6	40.35. df = 5 (101 P < 0.0000	1); l² = 99%		85	100.0%	70.82 [-2.36, 144.01]				•	
Test for overall effect: 2	z = 1.90 (P = 0.0	6)							-500	-250	0	250	500
Test for subgroup differ	ences: Not appli	cable							Fa	vours (Control	I)	Favours (FES	-cycling)

Leg lean mass

	F	ES-cycling			Control			Mean difference		Me	an differ	ence	
Study or Subgroup	Mean (Kg)	SD (Kg)	Total	Mean (Kg)	SD (Kg)	Total	Weight	IV, Random, 95% CI (Kg)		IV, Ran	dom, 95	% CI (Kg)	
Baldi 1998a	1.55	0.95	9	-3.59	1.86	9	35.8%	5.14 [3.78, 6.50]					
Baldi 1998b	1.55	0.95	9	-0.83	1.22	8	37.9%	2.38 [1.33, 3.43]			· ·	-	
Dolbow 2020	0.60	1.98	5	-1.10	3.59	5	19.8%	1.70 [-1.89, 5.29]			-+-		
Galea 2017	-0.50	8.90	10	1.90	9.96	11	6.4%	-2.40 [-10.47, 5.67]					
Total (95% CI)			33			33	100.0%	2.93 [0.71, 5.15]			-		
Heterogeneity: Tau ² = 3	.09; Chi ² = 12.6	1, df = 3 (P =	0.006); l ² =	76%									
Test for overall effect: Z	= 2.59 (P = 0.0	10)							-10	-5	0	5	10
Test for subgroup different	ences: Not appli	icable							Fav	ours (Contr	ol)	Favours (FES	S-cycling)

Total body lean mass

	F	ES-cycling			Control			Mean difference		Me	an differe	nce	
Study or Subgroup	Mean (Kg)	SD (Kg)	Total	Mean (Kg)	SD (Kg)	Total	Weight	IV, Random, 95% CI (Kg)		IV, Ran	dom, 95%	6 CI (Kg)	
Baldi 1998a	2.9	1.7	9	-4.83	4.2	9	45.5%	7.73 [4.77, 10.69]					
Baldi 1998b	2.9	1.7	9	-0.05	2.7	8	50.7%	2.95 [0.77, 5.13]				-	
Dolbow 2020	0.5	21.4	5	-0.40	9.9	5	3.9%	0.90 [-19.77, 21.57]					
Total (95% CI)			23			22	100.0%	5.04 [0.82, 9.27]					
Heterogeneity: Tau ² = 7.	94; Chi ² = 6.63	, df = 2 (P = 0	.04); l ² = 70%	6						1		1	
Test for overall effect: Z	= 2.34 (P = 0.0	2)							-20	-10	0	10	20
Test for subgroup differe	ences: Not appli	icable							Fav	ours (Contr	ol) F	avours (FES	S-cycling)

Bone density

	F	ES-cycling			Control			Mean difference		Mea	an diffe	rence	
Study or Subgroup	Mean (g/cm²)	SD (g/cm ²)	Total	Mean (g/cm²)	SD (g/cm ²)	Total	Weight	IV, Random, 95% CI (g/cm ²)		IV, Rando	om, 95%	% CI (g/cm²)	
Bloomfield 1996	0.048	0.131	7	-0.012	0.060	8	32.7%	0.06 [-0.05, 0.17]				•	_
Lai 2010	-0.022	0.090	12	-0.067	0.151	12	36.9%	0.05 [-0.05, 0.14]		-	_		-
Lauer 2011a	0.015	0.206	10	-0.014	0.169	9	12.8%	0.03 [-0.14, 0.20]				•	
Lauer 2011b	0.015	0.206	10	0.006	0.102	9	17.6%	0.01 [-0.14, 0.15]			-		-
Total (95% CI)			39			38	100.0%	0.04 [-0.02, 0.10]					
Heterogeneity: Tau ² =	0.00; Chi ² = 0.34	, df = 3 (P = 0.	95); I ² = 0%										
Test for overall effect:	Z = 1.35 (P = 0.1	8)							-0.2	-0.1	0	0.1	0.2
Test for subgroup diffe	rences: Not appli	icable							Fav	ours (Contro	ol)	Favours (FE	S-cycling)

Pendulum test – relaxation index

	FE	S-cycling			Control			Mean difference	Mean difference
Study or Subgroup	Mean (score)	SD (score)	Total	Mean (score)	SD (score)	Total	Weight	IV, Random, 95% CI (score)	IV, Random, 95% CI (score)
Krause 2008	0.39	0.14	5	0.06	0.32	5	8.1%	0.33 [0.02, 0.64]	
Lo 2009a	0.19	0.33	17	0.11	0.33	17	15.2%	0.08 [-0.14, 0.30]	•
Lo 2009b	0.19	0.33	17	0.01	0.38	17	13.2%	0.18 [-0.06, 0.42]	
Lo 2012	0.06	0.22	10	0.09	0.37	10	10.6%	-0.03 [-0.30, 0.24]	
Yeh 2010	0.10	0.16	16	0.05	0.17	16	52.8%	0.05 [-0.06, 0.16]	
Total (95% CI)			65			65	100.0%	0.09 [0.00, 0.17]	◆
Heterogeneity: Tau ² =	0.00; Chi ² = 4.14,	df = 4 (P = 0.39	9); I² = 3%						
Test for overall effect:	Z = 1.91 (P = 0.06	i)							-0.75 -0.50 -0.25 0 0.25 0.50 0.75
Test for subgroup diffe	erences: Not applic	able							Favours (Control) Favours (FES-cycling)

Ashworth Scale

	FES	S-cycling		(Control			Mean difference			Mear	n diffe	rence		
Study or Subgroup	Mean (score)	SD (score)	Total	Mean (score)	SD (score)	Total	Weight	IV, Random, 95% CI (score)		IV, I	Randor	n, 95%	% CI (so	ore)	
Krause 2008	-1.25	0.58	5	-0.92	0.85	5	7.8%	-0.33 [-1.23, 0.57]				•	_		
Lo 2009a	-0.59	1.11	10	-0.35	1.14	17	8.2%	-0.24 [-1.12, 0.64]				•	_		
Lo 2009b	-0.59	1.11	10	0.18	1.35	17	7.3%	-0.77 [-1.71, 0.17]		-	•	+			
Özen 2021a	-0.62	0.22	9	-0.50	0.43	9	28.3%	-0.12 [-0.44, 0.20]							
Özen 2021b	-0.61	0.22	10	-0.50	0.27	7	33.3%	-0.11 [-0.35, 0.13]				+			
Ralston 2013	-2.80	5.14	14	-1.00	7.32	14	0.3%	-1.80 [-6.49, 2.89]	-			-			_
Yeh 2010	-1.00	0.56	16	0.00	1.06	16	14.9%	-1.00 [-1.59, -0.41]		-	•	-			
Total (95% CI)			74			85	100.0%	-0.33 [-0.60, -0.05]							
Heterogeneity: Tau ² =	0.05; Chi ² = 9.75, 0	df = 6 (P = 0.14); l ² = 38%												
Test for overall effect:	Z = 2.31 (P = 0.02))							-3	-2	-1	0	1	2	3
Test for subgroup diffe	erences: Not applic	able							Favou	rs (FES-	cycling)	Favour	rs (contro	ol)

Hoffman reflex (H/M ratio)

	FE	S-cycling			Control			Mean difference			Me	an di	iffer	ence			
Study or Subgroup	Mean (score)	SD (score)	Total	Mean (score)	SD (score)	Total	Weight	IV, Random, 95% CI (score)			IV, Rand	om, 9	95%	CI (s	core)	
Lo 2009a	-0.13	0.30	17	-0.10	0.28	17	34.5%	-0.03 [-0.23, 0.17]				-	-		-		
Lo 2009b	-0.13	0.30	17	0.03	0.19	17	46.1%	-0.16 [-0.33, 0.01]			-		ł				
Lo 2012	-0.21	0.20	10	-0.14	0.37	10	19.3%	-0.07 [-0.33, 0.019]				•	+		-		
Total (95% CI)			44			44	100.0%	-0.10 [-0.21, 0.02]					+				
Heterogeneity: Tau ² =	= 0.00; Chi ² = 1.03,	df = 2 (P = 0.60	0); I ² = 0%														
Test for overall effect	Z = 1.67 (P = 0.0	9)							-0.4	-0.3	-0.2 -0	.1	0	0.1	0.2	0.3	0.4
Test for subgroup diff	erences: Not appli	cable							Favo	ours (F	ES-cycli	ng)		Favou	urs (c	ontrol)	

Motricity index

	FE	S-cycling		(Control			Mean difference				Mean	differen	ce	
Study or Subgroup	Mean (score)	SD (score)	Total	Mean (score)	SD (score)	Total	Weight	IV, Random, 95% CI (score)			IV, Rar	ndom	, 95% CI	(score	±)
Ambrosini 2011	30.0	41.6	12	10.0	46.1	13	0.4%	20.00 [-14.38, 54.38]			_		•		_
Bauer 2014	11.0	6.6	19	12.0	6.4	19	29.9%	-1.00 [-5.13, 3.13]				-			
Ferrante 2008	26.0	17.7	10	26.5	28.7	10	1.2%	-0.50 [-21.40, 20.40]				-+-			
Janssen 2008	0.9	2.9	6	0.3	1.8	6	68.5%	0.60 [-2.13, 3.33]				•			
Total (95% CI)			47			48	100.0%	0.19 [-2,07, 2.45]				•			
Heterogeneity: Tau ² =	0.00; Chi ² = 1.68,	df = 3 (P = 0.64); I ² = 0%								_				
Test for overall effect:	Z = 0.17 (P = 0.87)							-60	-40	-20	0	20	40	60
Test for subaroup diffe	rences: Not applic	able							F	avours	(Control)	Favours	(FES-	cvclir

Gross Motor Function Measure 88

	F	ES-cycling			Control			Mean difference			Mean	difference	
Study or Subgroup	Mean (score)	SD (score)	Total	Mean (score)	SD (score)	Total	Weight	IV, Random, 95% CI (score)		IV, Ra	andom	, 95% CI (sco	re)
Armstrong 2020	9.8	33.3	11	2.5	32.8	10	55.1%	7.30 [-20.99, 35.59]			-		
Özen 2021a	4.3	46.3	9	3.6	57.3	9	19.0%	0.75 [-47.39, 48.89]			-+		
Özen 2021b	4.3	46.3	9	5.0	38.0	7	25.8%	-0.67 [-42.00, 40.66]	_		-+-		
Total (95% CI)			29			26	100.0%	3.99 [-17.01, 25.00]					
Heterogeneity: Tau ² =	0,00; Chi ² = 0.12	, df = 2 (P = 0	.94); l ² = 0%	5								1	
Test for overall effect:	Z = 0.37 (P = 0.7	'1)							-50	-25	0	25	50
Test for subgroup diffe	rences: Not appl	icable							Fav	ours (Contro	ol)	Favours (FE	S-cycling)

Torque

	FE	S-cycling			Control			Mean difference		Me	an differe	nce	
Study or Subgroup	Mean (Newtons)	SD (Newtons)	Total	Mean (Newtons)	SD (Newtons)	Total	Weight	IV, Random, 95% CI (Newtons)	IV, Rando	n, 95% Cl	(Newtons)	1
Ambrosini 2011	-0.5	8.25	12	-1.7	7.87	13	21.4%	1.20 [-5.13, 7.53]			+		
Ambrosini 2012	6.8	16.75	13	2.1	12.09	13	20.4%	4.71 [-6.52, 15.94]			- - -		
deSousa 2016	14.7	39.77	20	6.9	41.36	20	16.0%	7.80 [-17.35, 32.95]			- - -	_	
Ferrante 2008	84.3	40.22	10	5.2	2.47	10	16.1%	79.12 [54.14, 104.10]				_	
Janssem 2008	9.7	44.40	4	12.7	18.20	15	10.1%	-3.00 [-47.48, 41.48]					
Johnston 2011a	55.8	58.07	9	11.7	52.78	9	8.6%	44.10 [-7.17, 95.37]			+		
Johnston 2011b	55.8	58.07	9	33.3	68.03	9	7.3%	22.50 [-35.94, 80.94]		_			-
otal (95% CI)			77			89	100.0%	20.31 [0.99, 39.63]					
leterogeneity: Tau ² = 4	42.73; Chi ² = 37.7	9, df = 6 (P < 0.0	0001); F	² = 84%									
est for overall effect: 2	Z = 2.06 (P = 0.04)								-100	-50	0	50	10
est for subgroup diffe	ences: Not applica	ble							Fav	ours (Contr	ol) Fa	avours (FES	3-cvcli

Power

FES-cycling				Control				Mean difference	Mean difference
Study or Subgroup	Mean (Watts)	SD (Watts)	Total	Mean (Watts)	SD (Watts)	Total	Weight	IV, Random, 95% CI (Watts)	IV, Random, 95% CI (Watts)
Armstrong 2020	14.6	27.8	11	5.3	30.8	8	0.5%	9.30 [-17.65, 36.25]	
Bakkun 2015	5.9	12.8	10	1.8	10.8	10	3.5%	4.10 [-6.24, 14.44]	- !-
Brurok 2011	10.0	5.8	6	0.0	4.2	6	11.4%	10.00 [4.23, 15.77]	
Ferrante 2008	4.4	3.3	10	-3.2	1.0	10	84.0%	7.60 [5.48, 9.72]	
Janssen 2008	15.3	23.9	6	0.0	19.2	6	0.6%	15.30 [-9.24, 39.84]	
Total (95% CI)			43			40	100.0%	7.81 [5.86, 9.75]	•
Heterogeneity: Tau ² =	= 0.00; Chi ² = 1.46,	df = 4 (P = 0.83); I² = 0%					-	

Test for overall effect: Z = 7.87 (P < 0.00001) Test for subgroup differences: Not applicable -50 -25 0 25 50 Favours (Control) Favours (FES-cycling)

Physical Fitness in Intensive Care Test (PFIT)

	F	ES-cycling			Control			Mean difference	Mean difference
Study or Subgroup	Mean (score)	SD (score)	Total	Mean (score)	SD (score)	Total	Weight	IV, Random, 95% CI (score)	IV, Random, 95% CI (score)
Berney 2021	6.4	2.4	80	5.1	3.0	82	49.6%	1.30 [0.46, 2.14]	
Parry 2014	5.3	1.9	8	2.9	1.8	8	25.6%	2.40 [0.59, 4.21]	
Waldauf 2021	9.4	4.2	37	9.6	4.2	42	24.8%	-0.20 [-2.06, 1.66]	
Total (95% CI)			125			132	100.0%	1.21 [0.04, 2.38]	\bullet
Heterogeneity: Tau ² =	0.53; Chi ² = 3.90	df = 2 (P = 0.	14); l ² = 499	6					
Test for overall effect:	Z = 2.03 (P = 0.0	4)							-5 -4 -3 -2 -1 0 1 2 3 -
Test for subaroup diffe	ences: Not appli	cable							Favours (Control) Favours (FES-

ICU length of stay

	FES-cycling			Control			Mean difference		Mean difference						
Study or Subgroup	Mean (days)	SD (days)	Total	Mean (days)	SD (days)	Total	Weight	IV, Random, 95% CI (days)		IV,	Rando	m, 95%	o CI (da	ys)	
Berney 2021	6.0	1.8	80	6.0	1.8	82	66.4%	0.00 [-0.55, 0.55]							
Parry 2014	9.0	3.4	8	14.5	7.8	8	8.9%	-5.50 [-11.40, 0.40]			·	\rightarrow			
Waldauf 2021	13.7	8.5	75	13.9	10.5	75	24.7%	-0.20 [-3.26, 2.86]	B6] —		-				
Total (95% CI)			163			165	100.0%	-0.54 [-2.42, 1.34]				◆			
Heterogeneity: Tau ² = 1	D						1	1		1					
Test for overall effect: Z						-15	-10	-5	0	5	10	15			

Test for subgroup differences: Not applicable

Favours (FES-cycling) Favours (control)

Study ID	Title	Population	Sample size	Mean age (SD)	Intervention	Control	Pulse width	Intensity	Frequency	Outcome variables
	Cardiorespiratory			<u> </u>						
	demand of acute									
	voluntary cycling									
	with functional									
	electrical									
	stimulation in									
	individuals with									
	multiple sclerosis									
	with severe									
Edwards	mobility	Multiple		58	Active FES-	Passive				VO2,
2018	impairment.	sclerosis	11	(6)	cycling	cycling	250	NA	50	Heart Rate
	Cardiorespiratory									
	responses during									
	functional									
	electrical									
	stimulation cycling									
	and electrical	_								
Fornusek	stimulation	Spinal cord		48	Passive			40 to		VO2,
2014	isometric exercise	injury	8	(14)	FES-cycling	FES alone	300	140	35	Heart Rate
	Metabolic,									
	ventilatory and									VO2, VCO2,
	cardiovascular									Energy
	responses to									expenditure,
	FES-cycling: A					Dession				Cardiac Output,
Frazão	comparison to			40	Dessive	Passive				Oxygen pulse, Ca
		Healthy	10	40			400	20 to 25	100	VUZ,
2022	passive cycling	nealiny	10	(15)	LE2-CACING	LE2 aione	400	20 10 35	100	VE

	Lactate									
	production without									
	hypoxia in skeletal									
	muscle during									
	electrical cycling:									
	Crossover study									
	of femoral									
	venous-arterial									
Gojda	differences in			31	Passive	Active				
2019	healthy volunteers	Healthy	14	(8)	FES-cycling	cycling	NA	25 to 67	NA	Lactate
	Cardiovascular									
	and ventilatory									
	responses to									
	electrically									
	induced cycling									VO2,
	with complete									Lactate,
	epidural									Cardiac Output,
Kjaer	anaesthesia in			27	Passive	Active		up to		Heart Rate,
1994	humans	Healthy	8	(2)	FES-cycling	cycling	350	130	30	VE
	Heart rate and									
	blood pressure									
	following									
	functional									
	electrical									
	stimulation									
	evoked activity									
	amongst									
Hamzaid	inpatients with	Spinal cord		42	Passive					
2018	spinal cord injury	injury	9	(8)	FES-cycling	Arm cycling	NA	NA	NA	Heart Rate

	Exercise									
	responses during									
	functional									
	electrical				Passive					
	stimulation cycling				FES-cycling					VO2,
Hasnan	in individuals with	Spinal cord		41	+ arm			up to		Lactate, Ca-vO2
2013	spinal cord injury	injury	9	(1)	cycling	Arm cycling	300	140	35	
	Muscle									
	oxygenation									
	during hybrid arm									
	and functional									
	electrical									
	stimulation-				Passive					
	evoked leg cycling				FES-cycling					
Hasnan	after spinal cord	Spinal cord		42	+ arm			up to		
2018	injury	injury	8	(1)	cycling	Arm cycling	300	140	35	Deoxyhemoglobir
	Metabolic and									
	hemodynamic									
	responses to									
	concurrent									VO2,
	voluntary arm									Cardiac Output,
	crank and									Stroke volume,
	electrical				Passive					Heart Rate, Ca-
	stimulation leg				FES-cycling					vO2,
Hooker	cycle exercise in	Spinal cord		33	+ arm			up to		VE
1992	quadriplegics	injury	8	(1)	cycling	Arm cycling	375	130	35	
	Metabolic effects									
	of electrotherapy									VO2,
Medrinal	combined with			23	Active FES-	Active				VCO2,
2015	bedside cycle-	Healthy	6	(2)	cycling	cycling	300	44 to 61	50	VE

	ergometry:									
	Preliminary study									
	Comparison of									
	exercise intensity									
	during four early									
	rehabilitation									
	techniques in									
	sedated and					Passive leg				
	ventilated patients					mobilization				
	in ICU: a					or passive				Cardiac Output,
Medrinal	randomized			65	Passive	cycling or				Heart Rate,
2018	cross-over trial.	Critically ill	19	(10)	FES-cycling	FES alone	300	NA	35	Deoxyhemoglobir
	Functional									
	Electrical									
	Stimulation—A									
	New Therapeutic									
	Approach to									
	Enhance Exercise									
	Intensity in									
	Chronic									
	Obstructive									
	Pulmonary									
	Disease Patients:									VO2,
	A Randomized,					Placebo				VCO2, Lactate,
Medrinal	Controlled			63	Active FES-	Active FES-				Heart Rate,
2018.2	Crossover Trial.	COPD	23	(11)	cycling	cycling	300	38 ± 9	35	VE
	Muscle									
	oxygenation									VO2,
Muraki	during prolonged	Spinal cord		35	Passive	Passive		up to		Cardiac Output,
2007	electrical	injury	4	(11)	FES-cycling	cycling	400	140	30	Stroke volume,

	stimulation- evoked cycling in paraplegics									Heart Rate, Deoxyhemoglobin VE
	Effects of electrically									
	stimulated									
	exercise and									
	passive motion on									
	echocardiographic									
	ally-derived wall									
	motion and									VO2,
	cardiodynamic									Cardiac Output,
	function in									Stroke volume,
Nash	tetraplegic	Spinal cord		26	Passive	Passive		up to	10	Heart Rate, Ca-
1995	persons	injury	6	(3)	FES-cycling	cycling	375	130	40	vO2
	Functional									
	Electrical									
	Stimulation									
	Changes Muscle									
	Oxygenation in									
	Patients with									
	Chronic									
	Obstructive									
	Pulmonary Discuss During									
	Disease During									
	Moderate-					Disasha				
Driour	A Secondary			62						
2010	A Secondary	COPD	22	(11)			200	20 + 0	25	Dooyybomodobir
2019	Analysis		23		cycling	cycling	300	30 ± 9	35	

	Cardiorespiratory									
	responses to arm									VO2, Cardiac
	cranking and									Output,
	electrical				Passive					Stroke volume,
	stimulation leg				FES-cycling					Heart Rate, Ca-
Raymond	cycling in people	Spinal cord		36	+ arm			up to		vO2,
1999	with paraplegia	injury	10	(2)	cycling	Arm cycling	375	132	35	VE
	Oxygen uptake									
	and heart rate									
	responses during									
	arm vs combined									
	arm/electrically				Passive					VO2, VCO2,
	stimulated leg				FES-cycling					Heart Rate,
Raymond	exercise in people	Spinal cord		32	+ arm					Oxygen pulse,
1997	with paraplegia.	injury	7	(3)	cycling	Arm cycling	NA	NA	NA	VE
	Inflammation-			, í						
	mediating									
	cytokine response									
	to acute hand-									
	cvclina exercise									
	with/without									
	functional									
	electrical				Passive					
	stimulation-				FES-cycling					
Paulson	evoked lower-limb	Spinal cord		44	+ arm			up to		VO2. Lactate.
2014	cvclina.	iniurv	5	(15)	cvcling	Arm cvcling	NA	145	35	Heart Rate
Máté	Functional	Multiple	10	52	Active FES-	Active	300	NA	35	VO2
2024	electrical	sclerosis	-	(10)	cvcling	cvcling				_
	stimulation			()	- ,	- ,				
	combined with									
			1	1		1		1		

voluntary cycling					
increases the					
VO2 response in					
people with					
severe multiple					
sclerosis:					
A pilot study					

FES: functional electrical stimulation, NA: non-available. VO2: oxygen consumption, VCO2: carbonic gas production, Ca-vO2: arterial-mixed venous oxygen content difference, VE: minute ventilation.

				Mea								
				n			Pul					
			Samp	age			se					
Study		Populati	le	(SD	Intervent		widt	Intens	Freque	Intervent	Protoco	Outcome
ID	Title	on	size)	ion	Control	h	ity	ncy	ion time	I	variables
Ambros ini 2012	Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients	Stroke / traumati c brain injury	30	59 (10)	Passive FES- cvcling	Placebo FES- cvcling	300	20 to 60	20	4 weeks	5 times/w eek	Torque
Ambros ini 2011	Cycling Induced by Electrical Stimulation Improves Motor Recovery in Post acute Hemiparetic Patients: A Randomized Controlled Trial	Stroke / traumati c brain injury	30	59 (10)	Active FES- cycling	Placebo FES- cycling	300	20 to 60	20	4 weeks	5 times/w eek	Gait speed, Motricity index, Upright motor control test, Torque

	Functional electrical stimulation cycling, goal-directed training, and adapted cycling for children with cerebral				Active							Gross Motor Function Measure 88
	randomized				cycling +		90				3	
Armstro	controlled	Cerebral		9	Usual	Usual	to	10 to			times/w	
ng 2020	trial	palsy	21	(3)	care	care	250	50	40 to 50	8 weeks	eek	
	Effects of											
	cycling											
	Versus											
	handcvcling											
	on											
	wheelchair-											
	specific											
	fitness and											
	physical											
	activity in											
	people with											
	long-term											
	spinal cord											Cardiorespir
	injury: a 16-				Passive							atory Fitness
	week	Oninal			FES-						0	- VO2,
Delduur	randomized	Spinal		40	cycling +	A		0.4-			2	Power
Bakkum	controlled	Cora	20	48	Arm	Arm	NIA		NIA	10	times/w	
2015	triai	injury	20	(10)	cycling	cycling	NA	150	NA	TO WEEKS	еек	

Baldi 1998	Muscle atrophy is prevented in patients with acute spinal cord injury using functional electrical stimulation	Spinal Cord Injury	26	28 (6)	Passive FES- cycling	no FES training or FES alone	375	0 to 140	60	6 months	3 times/w eek	Leg Lean mass, Total body Lean mass
	Functional electrical stimulation- assisted active cycling therapeutic effects in patients with hemiparesis from 7 days to 6 months after stroke:a											
Bauer 2014	randomized controlled pilot study	Stroke	40	59 (14)	Active FES- cycling	Active cycling	300 to 450	NA	20 to 60	4 weeks	3 times/w eek	Motricity index
Berney	Functional electrical stimulation in-bed cycle ergometry in	Critically		61 (51-	FES- cycling + Usual	Usual	250 to	20 to		During	5 times/w	Physical Function in Intensive Care Test (PFIT),
2021	mechanically	ill	162	69)	care	care	300	30	50	ICU stay	eek	Muscle ĆSA,

	ventilated patients: a multicentre randomized controlled trial											ICU length of stay, Patients Discharged to home, Delirium incidence
Bloomfi eld 1996	Bone mass and endocrine adaptations to training in spinal cord injured individuals	Spinal Cord Injury	17	28 (2)	Passive FES- cycling	no FES- cycling training	350	up to 130	50	9 months	NA	Bone density
Brurok	Effect of Aerobic High- Intensity Hybrid Training on Stroke Volume and Peak Oxygen Consumptio n in Men with Spinal	Spinal Cord		40	Passive FES- cycling + Arm	no FES- cycling		up to		8 weeks preceede d by 7 weeks of regular daily	3 times/w	Cardiorespir atory Fitness - VO2, Power
2011	Cord Injury.	Injury	6	40 (11)	cycling	training	NA	140	NA	activity	eek	Power

	Effects of Functional											
	Electrical											
	Lower											
	Extremity											
	Training in											
	Myotonic											
	Dystrophy											
	Type I: A										_	
	Pilot	Myotonic		50		resistance		50.4			5	
	Controlled	Dystroph	0	53	FES-	+ aerobic	200	50 to	20	15 dovo	times/w	
2016	Sludy	утурет	8	(14)	cycling	training	200	80	30	15 days	еек	OIVIVV I
	electrical											
	stimulation											
	cycling does											
	not improve											
	mobility in											
	people with											
	acquired											
	brain injury											
	and its											
	unclear: a	Acquired									5	
deSous	randomized	brain		62	FES-	Usual					times/w	
a 2016	trial	injury	40	(15)	cycling	care	450	NA	50	4 weeks	eek	Torque
	Effects of											
	functional											Muscle CSA,
	electric	Spinal			Passive	no FES-					3	Fiber type
Demch	stimulation	Cord		22	FES-	cycling		up to			times/w	composition
ak 2005	cycle	Injury	10	(5)	cycling	training	NA	140	NA	13 weeks	eek	

	ergometry training on lower limb musculature in acute SCI											
	individuals											
	induced											
	cycling and											Leg Fat
	nutritional											mass,
	counseling											I otal body Fat
	counteractin											Leg Lean
	g obesity	<u> </u>			Passive							mass,
Dalhaw	after spinal	Spinal		24	FES-			um to			3	I otal body
2020	Cora injury: Δ pilot study	Loiury	10	34 (5)	cycling +	nutrition	350	up to	40	8 wooks	umes/w	Lean mass
2020	Effect of	nijury	10	(3)	nathaon	nathaon	550	140	+0		COR	
	electrical											
	stimulation-											
	induced											
	cycling on				Dession							
	bone mineral											
	spinal cord-	Spinal			cycling +		300				3	
Eser	injured	Cord		33	passive	passive	to	up to			times/w	Bone Density
2003	patients	Injury	38	(11)	standing	standing	400	140	30 to 60	6 months	eek	, ,
	Cycling				Passive							Motricity
	induced by				FES-							index,
	functional				cycling +	Standard					7	Upright
Ferrant	stimulation			51	rehabilitat	Rehabilita					/ times/w	test Torque
e 2008	improves the	Stroke	20	(12)	ion	tion	NA	NA	NA	4 weeks	eek	Power

	muscular Torque and the motor control of individuals with post- acute stroke											
Galea 2017	A Randomized Controlled Trial Investigating the Efficacy and Safety of Functional Electrical Stimulation– Assisted Cycling and Passive Cycling Initiated Early After Traumatic Spinal Cord Injury	Spinal Cord Injury	24	39 (15)	Passive FES- cycling	Passive cycling	300 to 500	up to 140	35	12 weeks	4 times/w eek	Muscle CSA, Leg Fat mass, Total body Fat, Leg Lean mass
Jansse n 2008	Effects of electric stimulation- assisted cycling training in people with	Stroke	12	54 (11)	Active FES- cycling	Active placebo FES- cycling	NA	110 to 300	35	6 weeks	2 times/w eek	Cardiorespir atory Fitness - VO2, 6MWT, Motricity index,

	chronic stroke											Torque, Power
Johnsto n 2009	A randomized controlled trial on the effects of cycling with and without electrical stimulation on cardiorespira tory and vascular health in children with spinal cord injury	Spinal Cord Injury	30	10 (3)	Passive FES- cycling	Passive cycling or FES alone	150 to 300	up to 140	33	6 months	3 times/w eek	Cardiorespir atory Fitness - VO2
Johnsto n 2011	Muscle Changes Following Cycling and/or Electrical Stimulation in Pediatric Spinal Cord Injury	Spinal Cord Injury	30	11 (3)	Passive FES- cycling	Passive cycling or FES alone	150 to 300	up to 140	33	6 months	3 times/w eek	Muscle volume, Torque
Krause 2008	Changes in spastic muscle tone	Spinal Cord Injury	5	47 (12)	Passive FES- cycling	Passive cycling	500	up to 99	20	1 session		Pendulum Test -

	increase in patients with spinal cord injury using functional electrical stimulation and passive leg movements											relaxation index, Pendulum Test - peak velocity, Ashworth Scale
Lai 2010	Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury	Spinal Cord Iniury	24	29 (5)	Passive FES- cvcling	no FES- cycling training	300	NA	20	3 months	3 times/w eek	Bone density
Lauer 2011	Effects of cycling and/or electrical stimulation on bone mineral density in children with spinal cord injury	Spinal Cord Injury	30	11 (3)	Passive FES- cycling	Passive cycling or FES alone	150 to 300	up to 140	33	6 months	3 times/w eek	Bone density

Lo 2012	Cycling exercise with functional electrical stimulation improves postural control in stroke patients	Stroke	20	48 (3)	Active FES- cycling	Active	NA	NA	NA	1 session		Pendulum Test - relaxation index, Hoffmann's reflex
Lo 2009	Effects of a functional electrical stimulation- assisted leg- cycling wheelchair on reducing spasticity of patients after stroke	Stroke	17	56 (7)	Active FES- cycling	Active cycling or arm exercise	300	40-64	20	3 sessions		Pendulum Test - relaxation index, Ashworth Scale, Hoffmann's reflex
Mateo	Functional electrical stimulation- cycling favors erectus position restoration and walking in patients with critical	COVID-	14	63	Active FES-	Active	ΝΑ	32 to	ΝΑ	A weeks	3 times/w	Sedentary day time, Walking/runn

	A proof-of- concept controlled study											
Özen 2021	Effectivenes s of Functional Electrical Stimulation - Cycling Treatment in Children with Cerebral Palsy	Cerebral Palsy	25	6 (2)	Passive FES- cycling	Placebo passive FES- cycling or usual care	250- 300	up to 100	30 to 45	4 weeks	5 times/w eek	6MWT, Ashworth Scale, Gross Motor Function Measure 88
Panisse t 2022	Factors influencing thigh muscle volume change with cycling exercises in acute spinal cord injury - a secondary analysis of a randomized controlled trial	Spinal Cord Injury	24	40 (17)	Passive FES- cycling	Passive cycling	300 to 500	up to 140	35	12 weeks	4 times/w eek	Muscle volume
	Functional electrical				Passive FES-							Physical Function in
	stimulation				cycling +		300				5	Intensive
Parry	with cycling	Critically		62	usual	Usual	to	up to		During	times/w	Care Test
2014	in the	ill	16	(18)	care	care	400	140	30 to 50	ICU stay	eek	(PFIT),

	critically ill: A pilot case- matched control study											Time for independent ambulation, Time to marching in place, ICU length of stay, patients discharged to home, delirium incidence
Ralston 2013	electrical stimulation cycling has no clear effect on urine output, lower limb swelling, and spasticity in people with spinal cord injury: a randomized cross-over trial	Spinal Cord Injury	14	25 (25 to 32)	Passive FES- cycling + usual care	Usual care	350	up to 140	33	2 weeks	NA	Ashworth Scale
Sadows	Lower extremity functional	Spinal Cord	45	35	Passive FES-	no FES- cycling	500	up to	100	2 months	ΝΑ	Muscle
ry ZUIJ	CIECUICAI	injury	40	(14)	cycling	uannny	500	140	100	3 11011115	INA	volume

		1										
	stimulation											
	cycling											
	promotes											
	physical and											
	functional											
	recovery in											
	chronic											
	spinal cord											
	injury.											
	Aerobic											
	Responses											
	to FES-											
	Assisted and											
	Volitional					Active						
	Cycling in					cycling or						
	Children with				Active	no						Cardiorespir
Sansar	Cerebral	Cerebral		14	FES-	interventio						atory Fitness
e 2021	Palsv	Palsv	36	(2)	cvclina	n	NA	40	50	8 weeks	NA	- VO2
	Functional							-				
	electrical											
	stimulation-											
	assisted											
	cvcle											
	ergometry-											
	based											Physical
	progressive											Function in
	mobility											Intensive
	programme											Care Test
	for				Passive							(PFIT)
	mechanically				FFS-							Muscle CSA
	ventilated				cvclina +							ICU length of
Waldau	patients.	Critically		60	usual	Usual				During		stav
f 2021	randomized	ill	150	(15)	care	care	250	0-60	40	ICU stav		
				· (· •/							1	1

	controlled trial with 6 months follow-up										
Yeh 2010	Effect of a Bout of Leg Cycling With Electrical Stimulation on Reduction of Hypertonia in Patients With Stroke	Stroke	16	55 (8)	Active FES-	Active	300	up to	20	1 session	Pendulum Test - relaxation index, Ashworth Scale

FES: functional electrical stimulation, NA: non-available, CSA: cross-sectional area, ICU: intensive care unit, 6MWT: six-minute walking test.

Table 3: Minimal clinically important difference (MCID) for FES-cycling compared to control – Physiological effects.

Variable	Minimal clinically important difference
Metabolic	
Oxygen consumption (L/min)	0.04
Carbonic gas (L/min)	0.06
Lactate (mmol/L	0.28
Cardiocirculatory	
Heart rate (beats/min)	4.20
Stroke volume (mL)	2.80
Oxygen pulse (mL/beat)	0.70
Cardiac output (L/min)	0.40
Muscle oxygen extraction	
Peripheral muscle oxygen extraction (%)	8.76
Ventilatory	
VE (L/min)	0.86

Table 4: GRADE analysis for FES-cycling physiological effects compared to control.

Certainty assessment								atients	Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	FES- cycling	Control	Absolute (95% Cl)	Certainty	
	Oxygen consumption										
15	randomised trials	not serious	not serious	not serious	not serious	none	130	129	MD 0.21 L/min higher (0.14 higher to 0.28 higher)	⊕⊕⊕⊕ High	
	Carbonic gas production										
5	randomised trials	not serious	not serious	not serious	not serious	none	53	56	MD 0.23 L/min higher (0.08 higher to 0.38 higher)	⊕⊕⊕⊕ High	
	Lactate										
5	randomised trials	not serious	not serious	not serious	not serious	none	59	59	MD 2.35 mmol/L higher (0.53 higher to 4.16 higher)	⊕⊕⊕⊕ High	
					Hea	art Rate		•			
14	randomised trials	not serious	serious ^a	not serious	not serious	none	147	145	MD 9.94 beats/min higher (2.62 higher to 17.25 higher)	⊕⊕⊕⊖ Moderate	
	Stroke										
4	randomised trials	not serious	not serious	not serious	not serious	none	28	28	MD 13.88 mL higher (4.52 higher to 23.24 higher)	⊕⊕⊕⊕ High	
					Oxyg	en pulse					
3	randomised trials	not serious	not serious	not serious	not serious	none	27	27	MD 3.02 mL/beat higher (2.06 higher to 3.97 higher)	⊕⊕⊕⊕ High	

Certainty assessment								atients	Effect		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	FES- cycling	Control	Absolute (95% Cl)	Certainty	
	Cardiac output										
10	randomised trials	not serious	not serious	not serious	not serious	none	113	113	MD 1.46 L/min higher (0.63 higher to 2.28 higher)	⊕⊕⊕⊕ High	
				Pe	eripheral musc	e oxygen extraction	on				
12	randomised trials	not serious	serious ^a	not serious	not serious	none	130	130	MD 15.25 % higher (0.56 lower to 31.05 higher)	⊕⊕⊕⊖ Moderate	
	Minute ventilation										
10	randomised trials	not serious	not serious	not serious	not serious	none	91	94	MD 6.71 L/min higher (1.95 higher to 11.47 higher)	⊕⊕⊕⊕ High	

CI: confidence interval; MD: mean difference.

Explanations: a. Eyeball test and I square showing a substantial heterogeneity;

Table 5: Minimal clinically important (MCID) difference for FES-cycling compared to control – Clinical effects.

Variable	Minimal clinically important difference
Functional capacity	
Cardiorespiratory fitness (mL/min)	80
Six-minute walking distance (meters)	44
Body composition	
Muscle cross-sectional area (%)	11.20
Muscle volume (cm ³)	66
Leg lean mass (kg)	0.88
Total body lean mass (kg)	2.52
Bone density (g/cm ²)	0.01
Spasticity	
Pendulum test (score)	0.07
Ashworth scale (score)	0.40
Hoffmann reflex (score)	0.09
Mobility	
Motricity index(score)	4.60
Gross Motor Function Measure 88 (score)	11.50
Muscle performance	
Torque (Newtons)	11
Power (Watts)	3.80
Critical illness	
Physical Fitness in Intensive Care Test (score)	1.12
Intensive care unit length of stay (days)	1.84

Table 6: GRADE analysis for FES-cycling clinical effects compared to control.

Certainty assessment								atients	Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	FES- cycling	Control	Absolute (95% Cl)	Certainty	
Cardiorespiratory fitness											
7	randomised trials	serious ^a	not serious	not serious	not serious	strong association	66	59	MD 76.83 mL/min higher (17.41 lower to 171.08 higher)	⊕⊕⊕⊕ High	
Six-minute walking distance											
4	randomised trials	seriousª	not serious	not serious	not serious	none	28	26	MD 5.47 meters lower (89.31 lower to 78.37 higher)	⊕⊕⊕⊖ Moderate	
	Muscle cross sectional area										
4	randomised trials	not serious	very serious ^b	not serious	not serious	none	152	152	MD 30.4 % higher (4.31 lower to 65.12 higher)	⊕⊕⊖⊖ Low	
					Muscle	e volume					
6	randomised trials	seriousª	serious ^b	not serious	not serious	none	101	85	MD 70.82 cm ³ higher (2.36 lower to 144.01 higher)	⊕⊕⊖⊖ Low	
	Leg lean mass										
4	randomised trials	serious ^c	not serious	not serious	not serious	none	33	33	MD 2.93 Kg higher (0.71 higher to 5.15 higher)	⊕⊕⊕⊖ Moderate	
					Total bod	y lean mass					
3	randomised trials	seriousª	not serious	not serious	not serious	none	23	22	MD 5.04 Kg higher (0.82 higher to 9.27 higher)	⊕⊕⊕⊖ Moderate	

Certainty assessment							№ of patients		Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	FES- cycling	Control	Absolute (95% Cl)	Certainty	
	Bonde density										
4	randomised trials	serious ^a	not serious	not serious	not serious	none	39	38	MD 0.04 g/cm ² higher (0.02 lower to 0.1 higher)	⊕⊕⊕⊖ Moderate	
	Pendulum test – relaxation index										
5	randomised trials	serious ^a	not serious	not serious	not serious	none	65	65	MD 0.09 higher (0 to 0.17 higher)	⊕⊕⊕⊖ Moderate	
	Ashworth Scale										
7	randomised trials	serious ^a	not serious	not serious	serious ^d	none	74	85	MD 0.33 lower (0.6 lower to 0.05 lower)	⊕⊕⊖⊖ Low	
					Hoffm	an reflex					
3	randomised trials	serious ^a	not serious	not serious	not serious	none	44	44	MD 0.1 lower (0.21 lower to 0.02 higher)	⊕⊕⊕⊖ Moderate	
	1	l			Motric	ity index	•	l		1	
4	randomised trials	serious ^a	not serious	not serious	not serious	none	47	48	MD 0.19 higher (2.07 lower to 2.45 higher)	⊕⊕⊕⊖ Moderate	
	-			G	ross Motor Fu	nction Measure 88	3				
3	randomised trials	seriousª	not serious	not serious	not serious	none	29	26	MD 3.99 higher (17.01 lower to 25 higher)	⊕⊕⊕⊖ Moderate	
					То	orque					

Certainty assessment								atients	Effect		
Nº of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	FES- cycling	Control	Absolute (95% Cl)	Certainty	
7	randomised trials	seriousª	serious ^b	not serious	not serious	none	77	89	MD 20.31 Newtons higher (0.99 higher to 39.63 higher)	⊕⊕⊖⊖ Low	
Power											
5	randomised trials	serious ^a	not serious	not serious	not serious	strong association	43	40	MD 7.81 Watts higher (5.86 higher to 9.75 higher)	⊕⊕⊕⊕ High	
				Phy	sical Fitness in	Intensive Care To	est				
3	randomised trials	not serious	not serious	not serious	not serious	none	125	132	MD 1.21 higher (0.04 higher to 2.38 higher)	⊕⊕⊕⊕ High	
	Intensive care unit length of stay										
3	randomised trials	not serious	serious ^e	not serious	not serious	none	163	165	MD 0.54 days lower (2.42 lower to 1.34 higher)	⊕⊕⊕⊖ Moderate	

CI: confidence interval; MD: mean difference.

Explanations: a. ROB2 pointed that more than 50% of the studies are some concerns; b. Eyeball test an I square showing a considerable heterogeneity; c. ROB2 pointed that 50% of the studies are some concerns, 25% are high risk and 25% are low risk; d. Below minimal clinically important difference; e. Eye ball test showing heterogeneity.